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PREFACE.

HE material contained in the following translation was given
in substance by Professor Hilbert as a course of lectures on
euclidean geometry at the University of Gottingen during the
winter semester of 1898-1899. The results of his investigation
were re-arranged and put into the form in which they appear here
as a memorial address published in connection with the celebra-
tion at the unveiling of the Gauss-Weber monument at Géttingen,
in June, 1899. In the French edition, which appeared soon after,
Professor Hilbert made some additions, particularly in the con-
cluding remarks, where he gave an account of the results of a re-
cent investigation made by Dr. Dehn. These additions have been
incorporated in the following translation.

As a basis for the analysis of our intuition of space, Professor
Hilbert commences his discussion by considering three systems of
things which he calls points, straight lines, and planes, and sets
up a system of axioms connecting these elements in their mutual
relations. The purpose of his investigations is to discuss syste-
matically the relations of these axioms to one another and also the
bearing of each upon the logical development of euclidean geom-
etry. Among the important results obtained, the following are
worthy of special mention:

1. The mutual independence and also the compatibility of the
given system of axioms is fully discussed by the aid of various new
systems of geometry which are introduced.

2. The most important propositions of euclidean geometry are
demonstrated in such a manner as to show precisely what axioms
underlie and make possible the demonstration.

3. The axioms of congrnence are introduced and made the
basis of the definition of geometric displacement.

4. The significance-of several of the most important axioms
and theorems in the development of the euclidean geometry is
clearly shown; for example, it is shown that the whole of the
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euclidean geometry may be developed without the use of the axiom
of continuity ; the significance of Desargues’s theorem, as a con-
dition that a given plane geometry may be regarded as a part of a
geometry of space, is made apparent, etc.

8. A variety of algebras of segments are introduced in accord-
ance with the laws of arithmetic.

This development and discussion of the foundation principles
of geometry is not only of mathematical but of pedagogical im-
portance. Hoping that through an English edition these impor-
tant results of Professor Hilbert's investigation may be made more
accessible to English speaking students and teachers of geometry,
I have undertaken, with his permission, this translation. In its
preparation, I have had the assistance of many valuable sugges-
tions from Professor Osgood of Harvard, Professor Moore of Chi-
cago, and Professor Halsted of Texas. I am also under obliga-
tions to Mr, Henry Coar and Mr. Arthur Bell for reading the
proof.

E. J. TowNsEND
UNIVERSITY OF ILLINOIS.
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“All human knowledge begins with in-
tuitions, thence passes to concepts and
ends with ideas.”

Kant, Kritik der veinen Vernunft,
Elementariehre, Part 2, Sec. 2.

INTRODUCTION.

EOMETRY, like arithmetic, requires for its log-
ical development only a small number of simple,
fundamental principles. These fundamental princi-
ples are called the axioms of geometry. The choice
of the axioms and the investigation of their relations
to one another is a problem which, since the time of
Euclid, has been discussed in numerous excellent
memoirs to be found in the mathematical literature.*
This problem is tantamount to the logical analysis of
our intuition of space.

The following investigation is a new attempt to
choose for geometry a simple and complete set of inde-
pendent axioms and to deduce from these the most im-
portant geometrical theorems in such a manner as to
bring out as clearly as possible the significance of the
different groups of axioms and the scope of the con-
clusions to be derived from the individual axioms.

*Compare the prek ive and explanatory report of G. Veroness,
Grundziige der G trie, German translation by A. Schepp, Leipzig, 1894
(Appendix). See also F. Klein, * Zur ersten Verteilung des Lobatschefskiy-
Preises,”” Matk, Ann., Vol. 50.







THE FIVE GROUPS OF AXIOMS.

§ 1. THE ELEMENTS OF GEOMETRY AND THE FIVE
GROUPS OF AXIOMS.

ET us consider three distinct systems of things.
The things composing the first system, we will
call poinis and designate them by the letters 4, B,
C,....; those of the second, we will call straight
lines and designate them by the letters e, &, ¢, . . . .;
and those of the third system, we will call planes and
designate them by the Greek letters a, 8, vy, . . .
The points are called the elements of linear geometry ;
the points and straight lines, the elements of plane ge-
ometry ; and the points, lines, and planes, the elements
of the geometry of space or the elements of space.

We think of these points, straight lines, and planes
as having certain mutual relations, which we indicate
by means of such words as ¢‘are situated,” ¢‘be-
tween,” ¢¢parallel,” ¢‘congruent,” ¢‘continuous,” etc.
The complete and exact description. of these relations
follows as a consequence of the axioms of geometry.
These axioms may be arranged in five groups. Each
of these groups expresses, by itself, certain related
fundamental facts of our intuition. We will name
these groups as follows:

I, 1-7. Axioms of connection.

11, 1-5. Axioms of order.

III. Axiom of paraliels (Euclid’s axiom).
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1V, 1-6. Axioms of congruence.
V. Axiom of continuity (Archimedes’s axiom).

§ 2. GROUP I. AXIOMS OF CONNECTION.

The axioms of this group establish a connection
between the concepts indicated above ; namely, points,
straight lines, and planes. These axioms are as fol-
lows:

1, 1. Zwo distinct points A and B always completely
determine a straight line a. We write AB—=a
or Bd=a.

Instead of ¢ determine,” we may also employ other
forms of expression; for example, we may say 4
‘‘liesupon” a, 4 ‘‘is a point of” &, a ‘‘goes through™”
A ¢“and through” B, a *‘joins” 4 ‘¢and” or “‘with”
B, etc. If A4 lies upon « and at the same time upon
another straight line 3, we make use also of the ex-
pression: ¢“The straight lines” a ¢¢and” & ¢<have the
point 4 in common,” etc.

1, 2. Adny two distinct points of & straight line com-
pletely determine that line; that is, if AB—a and
AC=a, where B =4=C, tAen is also BC=a.

1, 3. Three points A, B, C not situated in the same

straight line alwavs completely determine @ plane
a HWewrite ABC=ea
We employ also the expressions: 4, B, C, ‘“le
m” a; A4, B, C ‘are points of ” e, etc.

L, & Adny three points 4, B, C of a plane e, whick
do mot lie tn the same straight line, completely de-
termine that pane.

L 3. If twe puints A, B of a straight line a lie in
@& planc a, them every point of @ lies in a
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In this case we say: ¢‘The straight line « lies in
the plane q,” etc.

1, 6. If two planes a, B have a point A in common,
then they have at least a second point B in common.

1, 1. Upon every straight line there exist at least two
points, in every plane at least three points nol
lying in the same straight line, and in space there
exist at least four points not lying in a plane.

Axioms I, 1-2 contain statements concerning points
and straight lines only; that is, concerning the ele-
ments of plane geometry. We will call them, there-
fore, the plane axioms of group I, in order to distin-
guish them from the axioms I, 3-7, which we will
designate briefly as the space axioms of this group.

Of the theorems which follow from the axioms
1, 3-7, we shall mention only the following :

THEOREM 1. Two straight lines of a plane have
either one point or no point in common; two
planes have no point in common or a straight
line in common; a plane and a straight line
not lying in it have no point or one point in
common.

TueoreM 2. Through a straight line and a point
not lying in it, or through two distinct straight
lines having a common point, one and only one
plane may be made to pass.

§ 3. GROUP II. AXIOMS OF ORDER.*

The axioms of this group define the idea expressed
by the word ¢‘between,” and make possible, upon the

*These axioms were first studied in detail by W. Pasch in his Vorlesungen
Bber mewere Geometrie, Leipsic, 1882, Axiom II, 5 is jp particular due to him.
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basis of this idea, an order of sequence of the points
upon a straight line, in a plane, and in space. The
points of a straight line have a certain relation to one
another which the word ‘‘between " serves to describe.
The axioms of this group are as follows:

11, 1. If 4, B, C are points of a straight line and
B lies between A and C, then B lies also between
Cand A.

A B c

Fig. 1.

I1, 2. If A and C are two points of a straight line,
then there exists at least one point B lying between
A and C and at least one point D so situated that
C lies between A and D.

A B Cc D

Fig. 2.

I1, 3. Of any three points situated on a straight line,
there is always one and only one whick lies between
the other two.

11, 4. Any four points A, B, C, D of a straight line
can always be so arranged that B shall lie between
A and C and also between A and D, and, further-
more, so that C shall lie between A and D and
also between B and D.

| DeriniTION. We will call the system of two points
' A and B, lying upon a straight line, a segment and
denote it by 48 or B4A. The points lying between 4
and B are called the points of the segment AB or the
points lying within the segment AB. All other points
are referred to,the points lying without the segment AB.
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The points 4 and B are called the extremities of the
segment 45.

11, 5. Let A, B, C be three points no! lying in the
same straight line and
let a be a straight
line lying in the plane
ABC and not passing
through any of the
points A, B, C. Then,
if the straight line a
passes through a point 2
of the segment AB, it
will also pass through
etther a point of the segment BC or a point of the
segment AC.

Fig. 3.

Axioms II, 1-4 contain statements concerning the
points of a straight line only, and, hence, we will call
them the Zinear axioms of group 7. Axiom 1I, b re-
lates to the elements of plane geometry and, conse-
quently, shall be called the planc axiom of group I1.

§ 4. CONSEQUENCES OF THE AXIOMS OF CONNEC-
TION AND ORDER.
By the aid of the four linear axioms II, 1-4, we
can easily deduce the following theorems:

TaEOREM 3. Between any two points of a straight
line, there always exists an unlimited number of
points.

THEOREM 4. If we have given any finit¢ number
of points situated upon a straight line, we can
always arrange them in a sequence 4, B, C,
D, E,.... Kso that B shall lie between 4
and C, D, E,...., K; Cbetween 4, B and D,
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E,...., K; Dbetween 4, B, Cand E,.... K,
etc. Aside from this order of sequence, there
exists but one other possessing this property
namely, the reverse order X,...., E, D, C
B, 4.

A___ B cop E K

Fig. 4.

Tueorem 5. Every straight line @, which lies in
a plane a, divides the remaining points of this
plane into two regions having the following
properties: Every point 4 of the one region de-
termines with each point B of the other region
a segment 4B containing a point of the straight
line 2. On the other hand, any two points 4,
A4’ of the same region determine a segment
AA’' containing no point of a.

A’

Fig. s.

If 4, 4', O, B are four points of a straight line q,
where O lies between 4 and B but not between 4 and

.A A’ (o B

Fig. 6.

A’, then we may say: The points 4, 4’ are situated
on the line a upon one and the same side of the point O,
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and the points A4, B are situated oz the straight line a
upon different sides of the point O. All of the points of
a which lie upon the samec side of O, when taken
together, are called the %a/f ray emanating from O.
Hence, each point of a straight line divides it into
two half-rays. '

Making use of the notation of theorem 5, we say:
The points 4, A4’ lie in the plane a upon one and the
same side of 1he straight line a, and the points 4, B lie
in the plane a upon different sides of the straight line a.

DerINITIONS. A system of segments 4B, BC,
CD,...., KL is called a broken line joining A with L
and is designated, briefly, as the broken line ABCDE
....KL. The points lying within the segments 45,
BC, CD,...., KL, as also the points 4, B, C, D,
...y K, L, are called tke points of the broken line. In
particular, if the point 4 coincides with Z, the broken
line is called a polygon and is designated as the polygon
ABCD....K. The segments 4B, BC, CD,...., KA
are called the sides of the polygon and the points 4, B,
C, D,...., K the vertices. Polygons having 3, 4,
b, ...., n vertices are called, respectively, friangles,
quadrangles, pentagons, .. .., n-gons. If the vertices of
a polygon are all distinct and none of them lie within
the segments composing the sides of the polygon,
and, furthermore, if no two sides have a point in com-
mon, then the polygon is called a simple polygon.

With the aid of theorem 5, we may now obtain,
without serious difficulty, the following theorems:

THEOREM 6. Every simple polygon, whose ver-
tices all lie in a plane @, divides the points of
this plane, not belonging to the broken line
constituting the sides of the polygon, into two
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regions, an interior and an exterior, having the
following properties: If 4 is a point of the in-
terior region (interior point) and B a point of
the exterior region (exterior point), then any
broken line joining 4 and B must have at least
one point in common with the polygon. If, on
the other hand, 4, 4’ are two points of the in-

Fig. 7.
terior and B, B’ two points of the exterior re-
gion, then there are always broken lines to be
found joining 4 with 4’ and B with B’ without
having a point in common with the polygon.
There exist straight lines in the plane a which
lie entirely outside of the given polygon, but

~ there are none which lie entirely within it.
TreoreM 7. Every plane o divides the remain-

ing points of space into two regions having the
following properties: Every point 4 of the one
region determines with each point B of the
other region a segment 4.8, within which lies
a point of . Any two points 4, 4’ lying within
the same region determine a segment 4.4’ ¢on-
taining no point of a.
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Making use of the notation of theorem 7, we may
now say: The points 4, 4’ are situated in space »por
one and the same side of the plane a, and the points 4, B
are situated in space wpon different sides of the plane a.

Theorem 7 gives us the most important facts re-
lating to the order of sequence of the elements of
space. These facts are the results, exclusively, of the
axioms already considered, and, hence, no new space
axioms are required in group II.

§ 5. GROUP III. AXIOM OF PARALLELS. (EUCLID'S
AXIOM.)

The introduction of this axiom simplifies greatly
the fundamental principles of geometry and facilitates
in no small degree its development. This axiom may
be expressed as follows:

II1.. 7n a plane a there can be drawn through any
point A, lying outside of a straight line a, one and
only one straight line which does not intersect the
line a. This straight line is called the parallel to
a through the given point A.

This statement of the axiom of parallels contains
two assertions. The first of these is that, in the plane
a, there is always a straight line passing through 4
which does not intersect the given line a. The second
states that only one such line is possible. The latter
of these statements is the essential one, and it may
also be expressed as follows:

THeorEM 8. If two straight lines'e, 4 of a plane
do not meet a third straight line ¢ of the same
plane, then they do not meet each other.

For, if a, 4 had a point 4 in common, there would
then exist in the same plane with ¢ two straight lines
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a and 4 each passing through the point 4 and not
meeting the straight line ¢. This condition of affairs
is, however, contradictory to the second assertion con-
tained in the axiom of parallels as originally stated.
Conversely, the second part of the axiom of parallels,
in its original form, follows as a ccnsequence of the-
orem 8.
The axiom of parallels is a plane axiom.

§ 6. GROUP IV. AXIOMS OF CONGRUENCE.

The axioms of this group define the idea of con-

gruence or displacement.
Segments stand in a certain relation to one an-
other which is described by the word ¢ congruent.”

IV, 1. If 4, B are two points on a straight line a,
and if A’ is a point upon the same or another
straight line a', then, upon a given side of A' of
the straight line a', we can always_jfind one and
only one point B' so that the segment AB (or BA)
is congruent o the segment A'B'. We indicate
this relation by writing

AB=A'F.

Every segment is congruent to itself; that is, we
always have ‘
AB=AB.

We can state the above axiom briefly by saying
that every segment can be /a:d off upon a given side
of a given point of a given straight line in one and
and only one way.

1V, 2. If a segment AB is congruent to the segment

A'B’ and also to the segment A" B", then the seg-
ment A'B’ is congruent to the segment A" B"; that
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is, if AB=A'B’ and AB=A"B", then A'B'=
AI’BII-

IV, 3. Let AB and BC be two segments of a straight
line a whick have no points in common aside from

the point B, and, furthermore, let A'B’ and B'C -

be two segments of the same or of another straight
line &' having, likewise, no point other than B' in

A B c a

A B’ c’ , o’

Fig. 8.

common. Then, if AB=—=A'B" and BC—=B'C’,
we have AC=A'C".

DeFinNiTIONS. Let a be any arbitrary plane and £,
% any two distinct half-rays lying in a and emanating
from the point O so as to form a part of two different
straight lines. We call the system formed by these
two half-rays %, 2 an angle and represent it by the
symbol / (4, &) or £ (%, £). From axioms II, 1-5, it
follows readily that the half-rays %2 and &, taken to-
gether with the point O, divide the remaining points
of the plane a into two regions having the following
property: If 4 is a point of one region and B a point
of the other, then every broken line joining 4 and B
either passes through O or has a point in common

with one of the half-rays 4, & If, however, 4, X &

both lie within the same region, then it is always pos-
sible to join these two points by a broken line which
neither passes through O nor has a point in common
with either of the half-rays £, 2. One of these two
regions is distinguished from the other in that the seg-
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ment joining any two points of this region lies entirely
within the region. The region so characterised is
called the Znterior of the angle (&, k). To distinguish
the other region from this, we call it the exterior of
the angle (&, k). The half rays % and % are called the
sides of the angle, and the point O is called the vertex
of the angle.

IV, 4. Let an angle (h, k) be given in the plane
e and lel a straight line &' be given in a plane o'.
Suppose also that, in the plane o', a definite side

.&“’, of the straight,a' be assigned. Denote by &' a

A

half-ray of the straight line a' emanating from a
point O of this line. Then in the plane o there
is one and only-one half-ray k' such that the angle
(%, &), or (&, %), is congruent to the angle (X', &)
and at the same time all inlerior points of the angle
(', B) lie upon the given side of a'. We express
this relation by means of the notation

L(h, BY=2(H, F).
Every angle is congruent lo itself; that is,

LUy Y=Ly B

Ly B =/ (%, k).

We say, briefly, that every angle in a given plane
can be /aid off upon a given side of a given half-ray in
one and only one way.

IV, 5. If the angle (%, %) is congruent to the angle
(', B) and to the angle (%', '), then the angle
(%, &) is congruent to the angle (K", k'), that is
to say, if L(h RY=y/ (%, F) and [ (%, &)=
LR, then L (B, KDY=, (X", F").

or

Suppose we have given a triangle 45C. Denote
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by 4, % the two half-rays emanating from 4 and pass-
ing respectively through B and C. The angle (4, 4)
is then said to be the angle included by the sides 48
and 4C, or the one opposite to the side BC in the
triangle 4BC. It contains all of the interior points
of the triangle 48C and is represented by the symbol
/BAC,orby s/ A.

IV, 6. If, in the two triangles ABC and A'B'C',
the congruences

AB=A'B', AC—A'C’, /| BAC=[B'A'C
hold, then the congruences

[/ ABC=/A'B'C' and f ACB=/ A'C'B
also hold.

Axioms IV, 1-3 contain statements concerning the
congruence of segments of a straight line only. They
may, therefore, be called the /incar axioms of group
IV. Axioms IV, 4, 5 contain statements relating to
the congruence of angles. Axiom IV, 6 gives the con-
nection between the congruence of segments and the
congruence of angles. Axioms IV, 3-6 contain state-
ments regarding the elements of plane geometry and
may be called the plane axioms of group IV.

‘§ 7. CONSEQUENCES OF THE AXIOMS OF CON-
GRUENCE.

Suppose the segment 4B is congruent to the seg-
ment 4’B’. Since, according to axiom IV, 1, the seg-
ment A28 is congruent to itself, it follows from axiom
IV, 2 that 4’ B’ is congruent to 4B ; that is to say, if
AB=A'F, then 4’'B'—=AB. We say, then, that the
two segments are congruent to one another.
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Let4,B,C,D,....,K,Land 4, B, C', D,....,
KXK', L' be two series of points on the straight lines a
and &', respectively, so that all the corresponding seg-
ments AB and A'B', ACand 4A'C’, BC and B'C/,....,
KL and K'L’ are respectively congruent, then t4e two
sertes of points are said 1o be congruent to one another.
A and A’y B and B’,...., L and L' are called corre-
sponding points of the two congruent series of points.

From the linear axioms IV, 1-3, we can easily de-
duce the following theorems:

THeEOREM 9. If the first of two congruent series
of points 4, B, C, D,...., K, L and 4', B,
C',yD,...., K’ L'is so arranged that B lies
between A and C, D,...., K, L, and Cbetween
A,Band D,...., K, L, etc., then the points 4’,
B, C,D,...., XK' L' of the second series are
arranged in a similar way; that is to say, B’
lies between 4’and C’, D,...., XK', L', and C’
lies between A', B’ and D,...., XK', L', etc.

Let the angle (4, #) be congruent to the angle
(%, #). Since, according to axiom IV, 4, the angle
(4, #) is congruent to itself, it follows from axiom IV,
5 that the angle (4, #') is congruent to the angle
(4, #). We say, then, that the angles (4, #) and (¥, #")
are congruent (o one another.

DeriniTiONs. Two angles having the same vertex
and one side in common, while the sides not common
form a straight line, are called supplementary angles.
Two angles having a common vertex and whose sides
form straight lines are called rertical angles. An angle
which is congruent to its supplementary angle is called
a right angle.

Two triangles 4BC and 4'B’C’ are said to be con-
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gruent to one another when all of the following con-
gruences are fulfilled :

AB=A4'F, AC=4'C, BC=AHC,

L A=, 4, /B=/PB, ,/1C=/C".

Tueorem 10. (First theorem of congruence for
triangles). If, for the two triangles 4.8C and
A'B'C’, the congruences

AB=A'B'), AC=A'C', fA=/s4'
hold, then the two triangles are congruent to
each other.

Proor. From axiom IV, 6, it follows that the
two congruences

L\%\ELB’ and £/ C=/7C’

are fulfilled, and it is, therefore, sufficient to show that
the two sides BC and B'C’ are congruent. We will
assume the contrary to be true, namely, that BC and
B'C" are not congruent, and show that this leads to a
contradiction. We take upon B'C’ a point [’ so that

* Fig.9.

BC=FD'. Thetwo triangles ABC and 4’5’ have,
then, two sides and the included angle of the one
agreeing, respectively, to two sides and the included
angle of the other. It follows from axiom IV, 6 that
the two angles B4 C and B'A4’'D’ are also congruent to
each other. Consequently, by aid of axiom IV, 5,
the two angles B'4'C’ and B'A4'D’ must be congruent.




18 THE FOUNDATIONS OF GEOMETRY.

This, however, is impossible, since, by axiom IV, 4,
an angle can be laid off in one and only one way on a
given side of a given half-ray of a plane. From this
contradiction the theorem follows.

We can also easily demonstrate the following the-
orem : '

TueEorEM 11. (Second theorem of congruence
for triangles). If in any two triangles one side
and the two adjacent angles are respectively
congruent, the triangles are congruent.

We are now in a position to demonstrate the fol-
lowing important proposition.

THEOREM 12. If two angles ABC and A'B'C’ are
congruent to each other, their supplementary
angles CBD and C’'B'D' are also congruent.

c C'
/& -~ — /k
D ’, o
A B A B

Fig. 10.

Proor. Take the points 4’, C’, D’ upon the sides

passing through B’ in such a way that
A'B'=AB, C'B—CB, DB —=DB.
Then, in the two triangles AB8C and 4'B'C’, the sides
AB and BC are respectively congruent to 4’5’ and
C'B’. Moreover, since the angles included by these
sides are congruent to each other by hypothesis, it
follows from theorem 10 that these triangles are con-
gruent; that is to say, we have the congruences
AC=4'C'", fBAC=/B4C".

On the other hand, since by axiom IV, 3 the segments
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AD and A'D' are congruent to each other, it follows
again from theorem 10 that the triangles C4D and
C’A' D’ are congruent, and, consequently, we have the
congruences :

CD=C'D, ftADC=/,A'DC'.
From these congruences and the consideration of the
triangles BCD and B'C'D', it follows by virtue of
axiom IV, 6 that the angles CBD and C'B'D’ are con-
gruent. .
As an immediate consequence of theorem 12, we
have a similar theorem concerning the congruence of
vertical angles.

THEOREM 13. Let the angle (4, £) of the plane a
be congruent to the angle (#, #) of the plane
o/, and, furthermore, let /be a half-ray in the
plane « emanating from the vertex of the angle
(%, #) and lying within this angle. Then, there
always exists in the plane o’ a half-ray /' em-
anating from the vertex of the angle (#, #) and
lying within this angle so that we have

L Y=L ), Lk DH=LE, D).

A

Fig. 11.

Proor. We will represent the vertices of the an-
gles (%, #) and (%, #) by O and O, respectively, and
so select upon the sides £, %, %, # the points 4, B,
A', B’ that the congruences

OA=0'4", OB=0F
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are fulfilled. Because of the congruence of the tri-
angles 04 B and O'A'B’, we have at once

AB—=A'B, [ OAF=/0A4B, L OBA=/O0F4'.

Let the straight line 4B intersect /in C. Take the
point C’ upon the segment 4’'B’ so that 4'C'=A4C.
Then, O'C’ is the required half-ray. In fact, it fol-
lows directly from these'congruences, by aid of axiom
IV, 3, that BC=5'C’. Furthermore, the triangles
OAC and O’'4’'C’ are congruent to each other, and the
same is true also of the triangles OBCand O'B'C'.
With this our proposition is demonstrated.

In a similar manner, we obtain the following prop-
osition.

THEOREM 14. Let %, 2, Zand %, ¥, /' be two sets
of three half-rays, where those of each set em-
anate from the same point and lie in the same
plane. Then, if the congruences

L D=L, 1), Lk D=LF D)
are fulfilled, the following congruence is also
valid ; viz.: '

2y Y=y (K, ¥). ‘

By aid of theorems 12 and 13, it is”possible to de-
duce the following simple theorem, which Euclid held
—although it seems to me wrongly—to be an axiom.

THeoreM 15. All right angles are congruent to
one another. e

Proor. Let the angle B4AD be congruent to its
supplementary angle C4.D, and, likewise, let the angle
B'A'D be congruent to its supplementary angle.
C'A'D'. Hence the angles BAD, CAD, B'A'D', and
C'A'D are all right angles. We will assume that the

~
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contrary of our proposition is true, namely, that the
right angle B'A4’D' is not congruent to the right angle
BAD, and will show that this assumption leads to a
contradiction. We lay off the angle B'4'D’ upon the
half-ray 4.8 in such a manner that the side 4D aris-
ing from this operation falls either within the angle
BAD or within the angle C4AD. Suppose, for ex-
ample, the first of these possibilities to be true. Be-
cause of the congruence of the angles B'A’D’ and
BAD", it follows from theorem 12 that angle C'4'D’
is congruent to angle CA4D"”, and, as the angles B'4’D’
and C'A4’'D’ are congruent to each other, then, by
IV, 5, the angle B4D"” must be congruent to CAD".

o D pm D’

8 A C B’ A [old

Fig. 12.

Furthermore, since the angle B4.D is congruent to the
angle CAD, it is possible, by theorem 13, to find within
the angle-CAD a half-ray 4D emanating from 4, so
that the angle B40" will be congruent to the angle
CAD"™, and also the angle DAD” will be congruent
to the angle DAD". The angle BAD"” was shown
to be congruent to the angle CAD"” and, hence, by
axiom IV, 5, the angle CAD", is congruent to the
angle CAD''. This, however, is not possible; for,
according to axiom IV, 4, an angle can be laid off in
a plane upon a given side of a given half-ray in only
one way. With this our proposition is demonstrated.
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We can now introduce, in accordance with com-
mon usage, the terms ‘“acute angle” and ¢ obtuse an-
gle.”

The theorem relating to the congruence of the
base angles 4 and B of an egu#ateral triangle 4B8C
follows immediately by the application of axiom IV,
6 to the triangles 4BC and BAC. By aid of this the-
orem, in addition to theorem 14, we can easily dem-

onstrate the following proposition.

TueoreM 16. (Third theorem of congruence for
triangles.) If two triangles have the three sides
of one congruent respectively to the correspond-
ing sides of the other, the triangles are con-
gruent.

Any finite number of points is called a figure. If
all of the points lie in a plane, the figure is called a
plane figure.

Two figures are said to be congruent if their points
can be arranged in a one-to-one correspondence so
that the corresponding segments and the correspond-
ing angles of the two figures are in every case con-
gruent to each other.

Congruent figures have, as may be seen from theo-
rems 9 and 12, the following properties: Three points
of a figure lying in a straight line are likewise in a
straight line in every figure congruent to it. In con-
gruent figures, the arrangement of the points in corre-
sponding planes with respect to corresponding lines
is always the same. The same is true of the sequence
of corresponding points situated on corresponding
lines.

The most general theorems relating to congruences
in a plane and in space may be expressed as follows:
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Tuaeorem 17. If (4, B, C,....) and (4, B, C',
....) are congruent plane figures and P is a
point in the plane of the first, then it is always
possible to find a point 7 in the plane of the
second figure so that (4, B, C,....P)and (4,
B, C'....P") shall likewise be congruent fig-
ures. If the two figures have at least three
points not lying in a straight line, then the se-
lection of P’ can be made in only one way.

Treorem 18. If (4, B, C,....) and (4', B, C,

..) are congruent figures and 2P represents

any arbitrary point, then there can always be

found a point P’ so that the two figures (4,

B, C,....,P) and (4, B, C',....P") shall

likewise be congruent. If the figure (4, B, C,

..P) contains at least four points not lying

in the same plane, then the determination of
P’ can be made in but one way.

This theorem contains an important result; namely,
that all the facts concerning space which have ref-
erence to congruence, that is to say, to displacements
in space, are (by the addition of the axioms of groups
I and II) exclusively the consequences of the six
linear and plane axioms mentioned above. Hence, it
is not necessary to assume the axiom of parallels in
order to establish these facts.

If we take, in addition to the axioms of congru-
ence, the axiom of parallels, we can then easily estab-
lish the following proposmons

THEoOREM 19. If two parallel lines are cut by a
third straight line, the alternate-interior angles
and also the exterior-interior angles are con-
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gruent. Conversely, if the alternate-interior or
the exterior-interior angles are congruent, the
given lines are parallel. .

TueEorEM 20. The sum of the angles of a triangle
is two right angles.

DeriniTiONs.  If M is an arbitrary point in the
plane q, the totality of all points A4, for which the seg-
n\en(\s MA are congruent to one another, is called @
circle. M is called the centre of the circle.

From this definition can be easily deduced, with
the help of the axioms of groups IIT and IV, all of the
known properties of the circle; in particular, the pos-
sibility of constructing a circle through any three
points not lying in a straight line, as also the congru-
ence of all angles inscribed in the same segment of
a circle, and the theorem relating to the angles of an
inscribed quadrilateral.

§8. GROUP V. AXIOM OF CONTINUITY. (ARCHI-
MEDES'S AXIOM.)

This axiom makes possible the introduction into
geometry of the idea of continuity. In order to state
this axiom, we must first establish a convention con-
cerning the equality of two segments. For this pur-
pose, we can either base our idea of equality upon the
axioms relating to the congruence of segments and
define as ¢‘equal” the corresponding congruent seg-
ments, or upon the basis of groups I and II, we may
determine how, by suitable constructions (see Chap.
V, § 24), a segment is to be laid off from a point of a
given straight line so that a new, definite segment is
obtained ¢ egual” to it. In conformity with such a
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convention, the axiom of Archimedes may be stated
as follows:

V. Let A, be any point upon a straight line between
the arbitrarily chosen points A and B. Take the
points A, A, A, .... 50 that A, lies between A
and A,y A, between A, and A,, A, between A, and
A, etc. Moreover, let the segments

AA,, A A, A,A4; AA,....
be equal to one another. Then, among this sertes

of points, there always exists a certain point A,
suck that B lies between A and A,

The axiom of Archimedes is a Zinear axiom.

ReMmark.* To the prece/ding five groups of ax-
ioms, we may add the following one, which, although
not of a purely geometrical nature, merits particular
attention from a theoretical point of view. It may be
expressed in the following form:

Axiom oF CoMPLETENESS.t (Vollstindigkeit): To a
system of poinls, straight lines, and planes, it is
impossible o add other elements in suck a manner
that the system thus generalized shall form a new
geomelry obeying all of the five groups of axioms.
In other words, the elements of geomelry jform a
system whick is not susceptible of extension, if we
regard the five groups of axioms as valid.

This axiom gives us nothing directly concerning
the existence of limiting points, or-efthe idea of con- J
vergence. Nevertheless, it enables us to demonstrate ey “““““"j
Bolzano’s theorem by virtue of which, for all sets of

#Added by Professor Hilbert in the French translation.—77,

+See Hilbert, *“ Ueber den Zahlenbegriff,”” Berickte der deutschen Matke-
matiker-Vereinigung, 1900,
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points situated upon a straight line between two defi-
nite points of the same line, there exists necessarily
a point of condensation, that is to say, a limiting point.
From a theoretical point of view, the value of this
axiom is that it leads indirectly to the introduction
of limiting points, and, hence, renders it possible to
establish a one-to-one correspondence between the
points of a segment and the system of real numbers.
However, in what is to follow, no use will be made of
the ‘‘axiom of completeness.”




COMPATIBILITY AND MUTUAL IN-
DEPENDENCE OF THE AXIOMS.

§ 9. COMPATIBILITY OF THE AXIOMS.

HE axioms, which we have discussed in the pre-
vious chapter and have divided into five groups,
are not contradictory to one another; that is to say,
it is not possible to deduce from these axioms, by any
logical process of reasoning, a proposition which is
contradictory to any of them. To demonstrate this,
it is sufficient to produce a geometry where all of the
five groups are fulfilled.

To this end, let us consider a domain  consisting
of all of those algebraic numbers which may be ob-
tained by beginning with the number one and apply-
ing to it a finite number of times the four arithmet-
ical operations (addition, subtraction, multiplication,
and division) and the irrational operation V1 o?,
where o represents a number arising from the five
operations already given.

Let us regard a pair of numbers. (x, y) of the do-
main Q as defining a point and the ratio of three such
numbers (#:v: w) of Q, where %, v are not both equal
to zero, as defining a straight line. Furthermore, let
the existence of the equation

ux+ovy+w=0
express the condition that the point (x, y) lies on the
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straight line (#:2:w). Then, as one readily sees,
axioms I, 1-2 and III are fulfilled. The numbers of
the domain Q are all real numbers. If now we take
into consideration the fact that these numbers may be
arranged according to magnitude, we can easily make
such necessary conventions concerning our points and
straight lines as will also make the axioms of order
(group II) hold. In fact, if (x, 3,), (%3 72)s (%5 ¥a)s
.... are any points whatever of a straight line, then
this may be taken as their sequence on this straight
line, providing the numbers x,, x, x,...., or the
numbers y,, ¥, ¥ .. . ., either all increase or decrease

in the order of sequence given here. In order that

axiom II, b shall be fulfilled, we have merely to as-
sume that all points corresponding to values of x and
y which make #x + vy + w less than zero or greater
than zero shall fall respectively upon the one side or
upon the other side of the straight line (#:7:w).
We can easily convince ourselves that this conven-
tion is in accordance with those which precede, and
by which the sequence of the points on a straight line
has already been determined.

The laying off of segments and of angles follows
by the known methods of analytical geometry. A
transformation of the form

X=x+a

y=y+4
produces a translation of segments and of angles.
Furthermore, if, in the accompanying figure, we rep-

A Wl A2 A3 A An-t B An

Fig. 13.
resent the point (0, 0) by O and the point (1, 0) by £,
then, corresponding to a rotation of the angle COE
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about O as a center, any point (%, y) is transformed
into another point (x’, ") so related that

a b
TVage Vagd
, a

Y= Vara T var s
Since the number

’

X

l1 4 (2Y
1+(2)
belongs to the domain @, it follows that, under the
conventions which we have made, the axioms of con-

l/a2+b’=a\'

(x/y?);

C(ab)
(xy)

O(0,0) E(1,0)
Fig. 14.

gruence (group IV) are all fulfilled. The same is true
of the axiom of Archimedes.

From these considerations, it follows that every
contradiction resulting from our system of axioms
must also appear in the arithmetic related to the do-
main Q.

The ‘corresponding considerations for the geom-
etry of space present no difficulties.

If, in the preceding development, we had selected
the domain of all real numbers instead of the domain
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Q, we should have obtained likewise a geometry in
which all of the axioms of groups I-V are valid. For
the purposes of our demonstration, however, it was
sufficient to take the domain 2, containing only an
enumerable set of elements.

§ 10. INDEPENDENCE OF THE AXIOM OF PARALLELS.
(NON-EUCLIDEAN GEOMETRY.)*

Having shown that the axioms of the above system
are not contradictory to one another, it is of interest
to investigate the question of their mutual indepen-
dence. In fact, it may be shown that none of them
can be deduced from the remaining ones by any logical
process of reasoning.

First of all, so far as the particular axioms of
groups I, II, and IV are concerned, it is easy to show
that the axioms of these groups are each independent
of the others of the same group.t

According to our presentation, the axioms of groups
I and IT form the basis of the remaining axioms. It
is sufficient, therefore, to show that each of the groups
II1, IV, and V is independent of the others.

The first statement of the axiom of parallels can
be demonstrated by aid of the axioms of groups I, I,
and IV. In order to do this, join the given point 4
with any arbitrary point B of the straight line . Let
C be any other point of the given straight line. At

*The mutual independence of Hilbert's system of axioms has also been
discussed recently by Schur and Moore. Schur’s paper, entitled ‘* Ueber die
Grundlagen der Geometrie '’ appeared in the Math. Annalen, Vol. 55, p. 265,
and that of Moore, *‘ On the Projective Axioms of Geometry,” is to be found
in the Jan. (1902) ber of the 77 tions of the Amer. Matk. Sociely.—Tr.

1t See my lectures upon Euclidean G try, winter ter of 1898-
1899, which were reported by Dr. Von Schaper and manifolded for the mem-
bers of the class.
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the point 4 on 425, construct the angle 4BC so that
it shall lie in the same plane a as the point C, but
upon the opposite side of 48 from it. The straight
line thus obtained through 4 does not meet the given
straight line @; for, if it should cut it, say in the point
D, and if we suppose B to be situated between C and
D, we could then find on « a point 2 so situated that
B would lie between D and 2”, and, moreover, so
that we should have

AD=BD'.

Because of the congruence of the two triangles 48D .

and BAD', we have also
L ABD =/ BAD,

and since the angles 480" and 4BD are supplemen-
tary, it follows from theorem 12 that the angles B4D
and BALD' are also supplementary. This, however,
cannot be true, as, by theorem 1, two straight lines
cannot intersect in more than one point, which would
be the case if B4D and BAD' were supplementary.

The second statement of the axiom of parallels is

independent of all the other axioms. This may be

most easily shown in the following well known man-
ner. As the individual elements of a geometry of
space, select the points, straight lines, and planes of
the ordinary geometry as constructed in § 9, and re-
gard these elements as restricted in extent to the in-
terior of a fixed sphere. Then, define the congruences
of this geometry by aid of such linear transformations
~ of the ordinary geometry as transform the fixed sphere
into itself. By suitable conventions, we can make
this ¢“non-cuclidean geometry” obey all of the axioms
of our system except the axiom of Euclid (group III).
Since the possibility of the ordinary geometry has

[~
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already been established, that of the non-euclidean
geometry is now an immediate consequence of the
above considerations.

§ 11. INDEPENDENCE OF THE AXIOMS OF CON-
GRUENCE.

We shall show the independence of ‘the axioms of
congruence by demonstrating that axiom IV, 6, or
what amounts to the same thing, thet the first theo-
rem of congruence for triangles (theorem 10) cannot
be deduced from the remaining axioms I, II, III, IV
1-6, V by any logical process of reasoning.

Select, as the points, straight lines, and planes of
our new geometry of space, the points, straight lines,
and planes of ordinary geometry, and define the laying
off of an angle as in ordinary geometry, for example,
as explained in § 9. We will, however, define the lay-
ing off of segments in another manner. Let 4,, 4, be
two points which, in ordinary geometry, have the co-
ordinates x,, y,, 5, and x,, ¥, %, respectively. We
will now define the length of the segment 4,4, as the
positive value of the expression

Vo —x+n—n)l+ h—rn)+ E—a)
and call the two segments 4,4, and 4',4’, congruent
when they have equal lengths in the sense just de-
fined.

It is at once evident that, in the geometry of space
thus defined, the axioms I, II, III, IV 1-2, 45, V are
all fulfilled.

In order to show that axiom IV, 3 also holds, we
select an arbitrary straight line @ and upon it three
points A,, {.. 4, so that 4, shall lie between 4, and
Ay Let the points x, y, 5 of the straight line a be
given by means of the equations
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x=N-+NX,
y=pt+u,
s=vi+V,

where A, X', u, p', v, v represent certain constants and

¢ is a parameter. If 7, 7, (<), 4 (<%) are the values

of the parameter corresponding to the points 4,, 4,,

A,, we have as the lengths of the three segments 4,4,

A,A4,, and 4,4,, respectively, the following values:
h—8) [V A+ 0P + w2+ 7]

(H—1) |‘/()‘+I")2+P‘2+V2|
(tl—ia)ll/(h'i‘l")z‘f’l"z"’ Vz]-
Consequently, the length of 4,4, is equal to the sum of
the lengths of the segments 4,4, and 4,4, But this
result is equivalent to the existence of axiom IV, 3.

Axiom IV, 6, or rather the first theorem of con-
gruence for triangles, is not always fulfilled in this
geometry. Consider, for example, in the plane =0,
the four points

O, having the co-ordinates x =0, y=0
A, 113 6 13 x=1, y= 0
B’ 13 113 ‘¢ x = 0, y= 1
C', e € (13 P %’ }'2%-

Then, in the right triangles 8on

OAC and OBC, the angles at '

C as also the adjacent sides

AC and BC are respectively cab

congruent ; for, the side OCis 1? *

common to the two triangles

and the sides 4 C and BC have ,

the same length, namely, ;. oG A0,0)

However, the third sides 04 Fig. 13.
and OB have the lengths 1 and 12, respectively, and
are not, therefore, congruent.
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It is not difficult to find in this geometry two tri-
angles for which axiom IV, 6, itself is not valid.

§ 12. INDEPENDENCE OF THE AXIOM OF CONTIN-
UITY. (NON-ARCHIMEDEAN GEOMETRY.)

In order to demonstrate the independence of the
axiom of Archimedes, we must produce a geometry
in which all of the axioms are fulfilled with the excep-
tion of the one in question.*

For this purpose, we construct a domain Q(#) of
all those algebraic functions of # which may be ob-
tained from 7 by means of the four arithmetical opera-
tions of addition, subtraction, multiplication, division,
and the fifth operation 11 «? where o represents
any function arising from the application of these five
operations. The elements of Q(#¥)—just as was pre-
viously the case for Q—constitute an enumerable set.
These five operations may all actually be performed
and that in only one way. The domain Q(#) contains,
therefore, only real, single-valued functions of ¢.

Let ¢ be any function whatever of the domain Q(#).
Since this function ¢ is an algebraic function of 7, it
can in no case vanish for more than a finite number of
values of 4, and, hence, for sufficiently large positive
values of 7, it must remain always positive or always
negative. '

Let us now regard the functions of the domain
Q(?#) as a kind of complex numbers. In the system of
complex numbers thus defined, all of the ordinary
rules of operation evidently hold. Moreover, if a, &
are any two distinct numbers of this system, then e

#*In his very scholarly book,—Grundziige der Geometrie, German transla-

tion by A. Schepp, Leipzig, 1894,—G. Veronese has also attempted-the con-
struction of a geometry independent of the axiom of Archimedes. |
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is said to be greater than, or less than, 4 (written a>¢
or a<b) according as the difference c=a— 4 is always
positive or always negative for sufficiently large values
of 2. By the adoption of this convention for the num-
bers of our system, it is possible to arrange them ac-
cording to their magnitude in a manner analogous to
that employed for real numbers. We readily see also
that, for this system of complex numbers, the validity
of an inequality is not destroyed by adding the same
or equal numbers to both members, or by multiplying
both members by the same number, providing it is
greater than zero. .

If # is any arbitrary positive integral rational num-
ber, then, for the two numbers 7~ and # of the domain
Q(?), the inequality # <7 certainly holds; for, the
difference »—¢, considered as a function of ¢, is always
negative for sufficiently large values of 2 We express
this fact in the following manner: The two numbers
1 and # of the domain Q(#), each of which is greater
than zero, possess the property that any multiple
whatever of the first always remains smaller than the
second.

From the complex numbers of the domain Q(?),
we now proceed to construct a geometry in exactly
the same manner as in § 9, where we took as the basis
of our consideration the algebraic numbers of the do-
main 0. We will regard a system of three numbers
(%, y, 2) of the domain Q(#) as defining a point, and
the ratio of any four such numbers (#:v: w: 7), where
%, 9, w are not all zero, as defining a plane. Finally,
the existence of the equation

cutyv+zw+r=0
shall express the condition that the point (x, y, ) lies
in the plane (#:v:w:7). Let the straight line be de-
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fined in our geometry as the totality of all the points
lying simultaneously in the same two planes. If now
we adopt conventions corresponding to those of § 9
concerning the arrangement of elements and the lay-
ing off of angles and of segments, we shall obtain a
‘“non-archimedean” geometry where, as the properties
of the complex number system already investigated
show, all of the axioms, with the exception of that of
Archimedes, are fulfilled. In fact, we can lay off suc-
cessively the segment 1 upon the segment # an arbi-
trary number of times without reaching the end point
of the segment #, which is a contradiction to the axiom
of Archimedes.



THE THEORY OF PROPORTION.*
§13. COMPLEX NUMBER SYSTEMS.

T the beginning of this chapter, we shall present
briefly certain preliminary ideas concerning com-
plex number systems which will later be of service to
us in our discussion.
The real numbers form, in their totality, a system
of things having the following properties :

THEOREMS OF CONNECTION (1-12).

1. From the number @ and the number &, there
is obtained by ‘¢‘addition” a definite number ¢,

" which we express by writing

at+b=cor c=a+2d.

2. There exists a definite number, which we call
0, such that, for every number @, we have

a+0=a and 0} a=a.

3. If @ and & are two given numbers, there exists
one and only one number %, and also one and
only one number y, such that we have respect-
ively

at+x=b y+a=5s.

4. From the number ¢ and the number 4, there

may be obtained in another way, namely, by

* See also Schur, Matk. Annalen, Vol. 55, p. 265.—7T7.
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<“multiplication,” a definite number ¢, which
we express by writing

ab=—c¢ or c=ab.

5. There exists a definite number, called 1, such
that, for every.number a, we have

a'l=a and 1-a=a.

6. If 2 and 4 are any arbitrarily given numbers,
where a is different from 0, then there exists
one and only one number x and also one and
only one number y such that we have respect-
ively

ax —= b, ya = b.
If a, &, ¢ are arbitrary numbers, the following laws
of operation always hold :

7. at+(G+)=(@+o+¢
8. PR —b4ta

9. a(bc) =(ab)c

10. a(b+¢) =ab+tac
11. (a+b)e =ac+ bc

12. ab =da.

THEOREMS OF ORDER (13-16).

13. If g, 4 are any two distinct numbers, one of
these, say a, is always greater (>) than the
other. The other number is said to be the
smaller of the two. We express this relation
by writing

a>54 and 4 <a.
14, If a> b6 and 6> ¢, thenisalso a>c.

15. If a> 4, then is also a +c>é+cand c+a
>c+ 6.
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16. If a>6 and ¢>0, then is also ac>éc and
ca>ch.

THEOREM OF ARCHIMEDES (17).

17. If @, & are any two arbitrary numbers, such
that ¢>0 and 4> 0, it is always possible to
add a to itself a sufficient number of times so
that the resulting sum shall have the property
that

at+at+a+....4+a>8b

A system of things possessing only a portion of the
above properties (1-17) is called a complex number
system, or simply a number system. A number system
is called archimedean, or non-archimedean, according as
it does, or does not, satisfy condition (17).

Not every one of the properties (1-17) given above
is independent of the others. The problem arises to
investigate the logical dependence of these properties.
Because of their ‘great importance in geometry, we
shall, in §§ 32, 33, pp. 101-106, answer two definite
questions of this character. We will here merely call
attention to the fact that, in any case, the last of these
conditions (17) is not a consequence of the remaining
properties, since, for example, the complex number
system 2 (?), considered in § 12, possesses all of the
properties (1-16), but does not fulfil the law stated
in (17). }

§ 14. DEMONSTRATION OF PASCAL'S THEOREM.

In this and the following chapter, we shall take as
the basis of our discussion all of the plane axioms
with the exception of the axiom of Archimedes; that
is to say, the axioms I, 1-2 and II-IV. In the pres-
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ent chapter, we propose, by aid of these axioms, to
establish Euclid’s theory of proportion ; that is, we
shall establish it for the planc and that independently of
the axiom of Archimedes.

For this purpose, we shall first demonstrate a prop-
osition which is a special case of the well known the-
orem of Pascal usually considered in the theory of
conic sections, and which we shall hereafter, for the
sake of brevity, refer to simply as Pascal’s theorem.
This theorem may be stated as follows:

THEeOREM 21. (Pascal’s theorem.) Given the two
sets of points 4, B, C and 4’, B', C’ so situated
respectively upon two intersecting straight lines
that none of them fall at the intersection of
these lines. If C#’ is parallel to BC' and CA4’
is also parallel to 4C’, then BA’ is parallel to
AB'.*

Cc B A
Fig. 16.

In order to demonstrate this theorem, we shall
first introduce the following notation. In a right
triangle, the base ¢ is uniquely determined by the

*F. Schur has published in the Matk. Ann., Vol. 51, a very interesting
proof of the theorem of Pascal, based upon the axioms I-II, IV,
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hypotenuse ¢ and the base angle @ included by @ and
‘¢. We will express this fact
briefly by writing
a—=—=aqac. G

Hence, the symbol ac¢ always
represents a definite segment, (c3 Ll
providing ¢ is any given seg- Fig. 17.
ment whatever and a is any given acute angle.

Furthermore, if ¢ is any arbitrary segment and a,
B are any two acute angles whatever, then the two
segments af8c and Bac are always congruent; that is,
we have

afc = Pac,

and, consequently, the symbols o« and B are inter-
changeable. ‘

In order to prove this statement, we take the seg-
ment ¢=AB, and with 4 as a vertex lay off upon the
one side of this seg-

"ment the angle a
and upon the other
the angle 8. Then,
from the point 3,
let fall upon the
opposite sides of
the « and B the
perpendiculars BC
and BD, respec-
tively. Finally, join
C with D and let fall from 4-the perpendicular A £
upon CD. ’

Since the two angles 4CB and 4A.DB are right an-
gles, the four points 4, B, C, D are situated upon a
circle. Consequently, the angles 4CD and 48D,

A

Fig. 18,
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being inscribed in the same segment of the circle,
are congruent. But the angles 4CD and CAE, taken
together, make a right angle, and the same is true of
the two angles 48D and B4AD. Hence, the two an-
gles CAE and BAD are also congruent ; that is to say,

L CAE=]

and, therefore,
' [/ DAE =xua.

From these considerations, we have immediately
the following congruences of segments:
Bc—=AD, ac=A4C,
afc=a(4AD)—=AE, Bac=p(AC)=A4E.

From these, the validity of the congruence in ques-
tion follows. :

Returning now to the figure in connection with
Pascal’s theorem, denote the intersection of the two
given straight lines by O and the segments 04, OB,
0cC, 04', OB, OC', CB', BC’, CA’, AC', BA', AF’
by a, &, ¢, @', &, &, I, I*, m, m*, n, n*, respectively.

o c b a
Fig. 19.
Let fall from the point O a perpendicular upon each
of the segments /, m, n. The perpendicular to / will
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form with the straight lines O4 and 04’ acute an-
gles, which we shall denote by A’ and A, respectively.
Likewise, the perpendiculars to 7 and 7 form with
these same lines O4 and OA’ acute angles, which we
shall denote by u', p and v, v, respectively. If we
now express, as indicated above, each of these per-
pendiculars in terms of the hypotenuse and base angle,
we have the three following congruences of segments:

) Ab'=Nc¢
@ pa' =pic
3 va' =v'b.

But since, according to our hypothesis, / is parallel to
/* and m is parallel to m*, the perpendiculars from O
falling upon /* and »* must concide with the perpen-
diculars from the same point falling upon 7/ and m,
and consequently, we have

N C)) Al =N\,

®) pe' —pla.

Multiplying both members of congruence (3) by
the symbol Mp and remembering that, as we have
already seen, the symbols in question are commuta-
tive, we have '

A ua’ =v'p)'b.
In this congruence, we may replace pa’ in the first
member by its value given in (2) and \'5 in the second
member by its value given in (4), thus obtaining as a
result

wWWp'e=v'pAd,
or '

vwNe=-vapc.

Here again in this congruence we can, by aid of (1),
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replace A'c by A4, and, by aid of (5), we may replace
in the second member uc’ by p’'a. 'We then have
wwAb' =vAp'a,
or
C AV =ApVa.
Because of the significance of our symbols, we can
conclude at once from this congruence that

pve'=p'va,
and, consequently, that
(6) v'=va.

If now we consider the perpendicular let fall from
O upon 7 and draw perpendiculars to this same line
from the points 4 and 5’, then congruence (6) shows
that the feet of the last two perpendiculars must coin-
cide; that is to say, the straight line »* =4 5’ makes
a right angle with the perpendicular to # and, conse-
quently, is parallel to ». This establishes the truth
of Pascal’s theorem.

Having given any straight line whatever, together
with an arbitrary angle and a point lying outside of
the given line, we can, by constructing the given angle
and drawing a parallel line, find a straight line pass-
ing through the given point and cutting the given
straight line at the given angle. By means of this
construction, we can demonstrate Pascal’s theorem in
the following very simple manner, for which, how-
ever, I am indebted to another source.

Through the point B, draw a straight line cutting
04’ in the point 2’ and making with it the angle
0CA4’, so that the congruence

a L 0CA'=/ OD'B
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is fulfilled. Now, according to a well known property
of circles, CBD’'A’ is an inscribed quadrilateral, and,
consequently, by aid of the theorem concerning the

c———8 A
Fig. 2.

congruence of angles inscribed in the same segment

of a circle, we have the congruence
(2% LOBA'=/0DC.

Since, by hypothesis, C4A' and AC’ are parallel, we

have -

3% LOCA'—/ OAC', -

and from (1*) and (3*) we obtain the congruence .-
LODB=/ 0OAC'. - b v
However, BAD'C' is also an inscribed quadrilateral, ¢(— " ™77 ¢

and, consequently, by virtue of the theoreém relating
to the angles of such a quadrilateral, we have the con-
gruence

4% L OAD' =/ OC'B.

But as CH is, by hypothesis, parallel to BC’, .we
have also



46 THE FOUNDATIONS CF GEOMETRY.

6y . LOBC=/0C'B.
From (4*) and (5*), we obtain the congruence
L 0AD =/ OF'C,

which shows that CA’ B’ is also an inscribed quad-
rilateral, and, hence, the congruence

(6% LOAB'=/0DC

is valid. From (2*) and (6%*), it follows that
L OBA'—/ OAB,
and this congruence shows that B4’ and 45’ are par-
allel as Pascal’s theorem demands.
In case I’ coincides with one of the points 4°, 5,
C’, it is necessary to make a modification of this
method, which evidently is not difficult to do.

§ 1s. AN ALGEBRA OF SEGMENTS, BASED UPON
PASCAL'S THEOREM.

Pascal’s theorem, which was demonstrated in the
last section, puts us in a position to introduce into
geometry a method of calculating with segments, in
which all of the rules for calculating with real num-
bers remain valid without any modification.

Instead of the word ¢‘congruent” and the sign =,
we make use, in the algebra of segments, of the word
‘equal” and the sign —.

< a N b S
<
A B - . C
< c=at+b

Fig. 21.

If A, B, C are three points of a straight line and
if B lies between 4 and C, then we say that c=A4Cis
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the sum of the two segments a=—=A4.58 and 6=BC. We
indicate this by writing
‘ c=a-tb.

The segments @ and 4 are said to be smaller than ¢,
which fact we indicate by writing

alec b<le.

On-the other hand, ¢ is said to be larger than ¢ and 4,
and we indicate this by writing

c>a, c>0.
From the linear axioms of congruence (axioms

IV, 1-3), we easily see that, for the above definition
of addition of segments, the associative law
a4 (b+)=(a4b)+¢
as well as the commutative law
at+b=b+a
is valid.

In order to define geometrically the product of two
segments @ and 4, we shall make use of the following
construction. Select any convenient segment, which,
having been selected, shall remain constant through-
out the discussion, and denote the same by 1. Upon
the one side of a
right angle, lay off
from the vertex O
the segment 1 and.
also the segment 4.
Then, from O lay off
upon the other side
of the right angle the
segment a. Join the
extremities of the segments 1 and « by a straight line,
and from the extremity of 4 draw a line parallel to

—

Fig. 22.
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this straight line. This parallel will cut off from the
other side of the right angle a segment . We call
this segment ¢ the product of the segments a and 3,
and indicate this relation by writing

c=ab.

We shall now demonstrate that, for this definition
of the multiplication of segments, the commutative law

ab=ba

holds. For this purpose, we construct in the above
manner the product a6. Furthermore, lay off from O
upon the first side ¢))
of the right angle the
segment @ and upon
the other side (II) the
segment 4. Connect by
a straight line the ex-
tremity of the segment
‘1 with the extremity of.
b, situated on II, and
draw through the end-
point of @, on I, a line
parallel to this straight
Fig. 23. line. This parallel will
determine, by its intersection with the side II, the
segment da. But, because the two dotted lines are,
7 y Pascal’s theorem,} parallel,/Ahe segment da just
° | tound coincides with lhﬁﬁgff:ent ab previously con-

structed, and our proposition is established.

In order to show that the associative law

a(bcy=(ab)c

holds for the multiplication of segments, we construct
first of all the segment d= 4, then da, after that the

bl

o s+ b
ab=ba.
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segment ¢ =/ba, and finally ¢c. By virtue of Pascal’s
theorem, the extremities of the segments Zz and ec
coincide, as may be clearly seen from figure 24. If

dax(bc)a

e-ba

dvbe

N

1
a(bey=/(ab)c
Fig. 24.
now we apply the commutative law which we have
just demonstrated, we obtain the above formula, which
expresses the associative law for the multiplication of

two segments.
Finally, tke distributive law

c a

a(b+c)=ab+ac

s(btc)

o S G e
a(b+cy=ab+ac
Fig. 25.
also holds for our algebra of segments. In order to
demonstrate this, we construct the segments, a4, ac,
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and a(4+ ¢), and draw through the extremity of the
segment ¢ (Fig. 25) a straight line parallel to the other
side of the right angle. From the congruence of the
two right-angled triangles which are shaded in the
figure and the application of the theorem relating to
the equality of the opposite sides of a parallelogram,
the desired result follows. If 4 and ¢ are any two ar-
bitrary segments, there is always a segment @ to be
found such that c—=ab. This segment @ is denoted

by% and is called the guotient of ¢ by 5.

§ 16. PROPORTION AND THE THEOREMS OF SIMILI-
TUDE.

By aid of the preceding algebra of segments, we
can establish Euclid’s theory of proportion in a man-
ner free from objections and without making use of
the axiom of Archimedes.

If @, b, a’, ' are any four segments whatever, the
proportion

a:b=a":d
expresses nothing else than the validity of equation
abl =ba'.

DEerINITION. Two triangles are called simi/ar when
the corresponding angles are congruent.

TueoreEM 22. If @, 4 and &', 4’ are homologous
sides of two similar triangles, we have the pro-
portion

a:b=a:¥
Proor. We shall first consider the special case
where the angle included between ¢ and & and the
one included between 4’ and &’ are right angles. More-
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over, we shall assume that the two triangles are laid
off in one and the same right angle. Upon one of the
sides of this right
angle, we lay off
from the vertex O
the segment 1, and
through the extrem-
ity of this segment,
we draw a straight
line parallel to the
hypotenuses of the o y N
two triangles. This Fig. 26
parallel determines
upon the other side of the right angle a segment e.
Then, according to our definition of the product of
two segments, we have

b=ca, V' =ecd,
from which we obtain

abl =ba’,

a’

that is to say,
a:b=a":b.

Let us now return to the general case. In each of
the two similar triangles, find the point of intersection
of the bisectors of
the three angles. De-
note these points by
S and S’ From
these points let fall
upon the sides of the
triangles the perpen-
diculars » and 7/, re-
spectively. Denote
the segments thus
determined upon the sides of the triangles by

ba

Ca )l Cy,
Fig. 27.
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@y @y Doy Doy Cay €y
and
as, a;, by by ¢y
respectively. The special cdse of our proposition,
demonstrated above, gives us then the following pro-
portions:
@y:r=ay:7r, b.:r==8.:7,
ar=a.:r, b,ir==04,:7r
By aid of the distributive law, we obtain from these
proportions the following :

a:r=a':7, b:r==56':7r.

Consequently, by virtue of the commutative Iaw of
multiplication, we have

a:b=a':b.

From the theorem just demonstrated, we can easily
deduce the fundamental theorem in the theory of pro-
portion. This theorem may be stated as follows:

TreorEM 23. If two parallel lines cut from the
sides of an arbitrary angle the segments &, 4
and o', &' respectlvely, then we have always the
proportion

ab=a':b.

Conversely, if the four segments @, 4, @', 6’

fulfill this proportion and if @, &’ and 4, &' are
laid off upon the two sides respectively of an
arbitrary angle, then the straight lines joining
the extremities of & and 4 and of &' and 4’ are
parallel to each other.
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§ 17. EQUATIONS OF STRAIGHT LINES AND OF
PLANES.

To the system of segments already discussed, let
us now add a second system. We will distinguish the
segments of the new system from those of the former
one by means of a special sign, and will call them
‘““negative” segments in contradistinction to the ¢¢gos-
itive” segments already considered. If we introduce
also the segment 0, which is determined by a definite
point, and make other appropriate conventions, then
all of the rules deduced in § 13 for calculating with
real numbers will hold equally well here for calcu-
lating with segments. We call special attention to
the following particular propositions:

We have always a-1=1:2—a.
If ¢-5=0, then either =0, or 4=0.
If a> 4 and ¢>0, then ac> &¢.

In a plane a, we now take two straight lines cut-
ting each other in O at right angles as the fixed axes
of rectangular co-ordinates, and lay off from O upon
these two straight lines the arbitrary segments x and
9. We lay off these segments upon the one side or
upon the other side of O, according as they are posi-
tive or negative. At the extremities of x and y, erect
perpendiculars and determine the point P of their in-
tersection. The segments x and y are called the co-
ordinates of 2. Every point of the plane a is uniquely
determined by its co-ordinates x, y, which may be
positive, negative, or zero.

Let / be a straight line in the plane a, such that it
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shall pass through O and also through a point C hav-
ing the co-ordinates a, 4. If x, y are the co-ordinates

Y

Fig. 28.

- of any point on /, it follows at once from theorem 22
that '
a:b=x:y,

or

bx —ay=0,
is the equation of the straight line /. If 7’ is a straight
line parallel to /and cutting off from the x-axis the
segment ¢, then we may obtain the equation of the:
straight line /' by replacing, in the equation for /, the
segment x by the segment x —¢. The )ggsired equa-
tion will then be of the form .
bx —ay—bc=0.

From these considerations, we may easily con-
clude, independently of the axiom of Archimedes, that
every straight line of a plane is represented by an
equation which is linear in the co-ordinates x, y, and,
conversely, every such linear equation represents a
straight line when the co-ordinates are segments ap-
pertaining to the geometry in question.
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The corresponding results for the geometry of
space may be easily deduced.

The remaining parts of geometry may now be de-
veloped by the usual methods of analytic geometry.

So far in this chapter, we have made absolutely
‘no use of the axiom of Archimedes. If now we as-
sume the validity of this axiom, we can arrange a
definite correspondence between the points on any
straight line in space and the real numbers. This
may be accomplished in the following manner.

We first select on a straight line any two points,
and assign to these points the numbers 0 and 1.
Then, bisect the segment (0, 1) thus determined and
denote the middle point by the number §. In the
same way, we denote the middle of (0, }) by }, etc.
After applying this process #» times, we obtain a point

. 1 . .
which corresponds to S Now, lay off m times in

both directions from the point O the segment((), %)

We obtain in this manner a point corresponding to

%and —% From the axiom of Archi-
medes, we now easily see that, upon the basis of this
association, to each arbitrary point of a straight line
there corresponds a single, definite, real number, and,
indeed, such that this correspondence possesses the
following property: If 4, B, C are any three points
on a straight line and a, B, y are the corresponding
real numbers, and, if B lies between 4 and C, then
one of the inequalities,
elB<yora>fp>y,

is always fulfilled.

From the development given in § 9, p. 27, it is
evident, that to every number belonging to the field of

the numbers
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algebraic numbers Q, there must exist a correspond-
ing point upon the straight line. Whether to every
real number there corresponds a point cannot in gen-
eral be established, but depends upon the geometry to
which we have reference.

However, it is always possible to generalize the
original system of points, straight lines, and planes
by the addition of ¢¢ideal” or ‘‘irrational ” elements,
so that, upon any straight line of the corresponding
geometry, a point corresponds without exception to
every system of three real numbers. By the adoption
of suitable conventions, it may also be seen that, in
this generalized geometry, all of the axioms I-V are
valid. This geometry, generalized by the addition of
irrational elements, is nothing else than the ordinary
analytic geometry of space.
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§ 18. EQUAL AREA AND EQUAL CONTENT OF
POLYGONS.*

E shall base the investigations of the present
chapter upon the same axioms as were made
use of in the last chapter, §§ 13-17, namely, upon the
plane axioms of all the groups, with the single excep-
tion of the axiom of Archimedes. This involves then
the axioms I, 1-2 and II-IV. _
The theory of proportion as developed in §§13-17
together with the algebra of segments introduced in
. the same chapter, puts us now in a position to estab-
lish Euclid’s theory of areas by means of the axioms
already mentioned ; that is to say, for tke plane geom-
etry, and that independently of the axiom of Archimedes.
Since, by the development given in the last chapter,
PP 37-56, the theory of proportion was made to de-
*In connection with the theory of areas, we desire to call attention to
the following works of M. Gérard: Thése de Doctorat sur la glométrie non
euclidienne (1892) and Géométrie plane (Paris, 1898). M. Gérard has developed
a theory concerning the measurement of polygons analogous to that presented
in § 20 of the present work. The difference is that M. Gérard makes use of
parallel transversals, while I use transversals emanating from the vertex.
The reader should also compare the following works of F. Schur, where he
will ind a similar development: Sitzungsberickte der Dorpater Naturf. Ges.,
1892, and Lekrbuck der analytischen Geometrie, Leipzig, 1898 (introduction).
Finally, let me refer to an article by O. Stolz in Monatskefte fiir Math. und
Phys., 1894.' (Note by Professor Hilbert in French ed.)
M. Gérard has also treated the subject of areas in various ways in the
following journals: Bulletin de Matk. speciales (May, 1895), Bulletin de la So-

cibté mathématique de Framce (Dec., 1895), Bulletin Math. élémentaires (Jan-
uary, 1896, June, 1897, June, 18g8). (Note in French ed.)



58 THE FOUNDATIONS OF GEOMETRY.

pend essentially upon Pascal’s theorem (theorem 21),
the same may then be said here of the theory of areas.
This manner of establishing the theory of areas seems
to me a very remarkable application of Pascal’s theo-
rem to elementary geometry.

If we join two points of a polygon P by any arbi-
trary broken line lying entirely within the polygon,
we shall obtain two new polygons 2, and 7, whose
interior points all lie within 2. We say that P is de-
composed into P, and P, or that the polygon P is com-
posed of P, and P,

DeriNiTION. Two polygons are said to be of equa’
arez when they can be decomposed into a finite num-
ber of triangles which are respectively congruent to
one another in pairs.

DeriniTiON. Two polygons are said to be of egual
conten? when it is possible, by the addition of other
polygons having equal area, to obtain two resultmg
polygons having equal area.

From these definitions, it follows at once that by
combining polygons having equal area, we obtain as
a result polygons having equal area. However, if
from polygons having equal area we take polygons
having equal area, we obtain polygons which are of
equal content. .

Furthermore, we have the following propositions :

TueorEM 24; If each of two polygons 7, and 2,
is of equal area to a third polygon P, then 2P,
and P, are themselves of equal area. If each
of two polygons is of equal content to a third,
then they are themselves of equal content.

Proor. By hypothesis, we can so decompose each
of the polygons P, and P, into such a system of tri-
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angles that any triangle of either of these systems
will be congruent to the corresponding triangle of a
system into which 2, may be decomposed. If we con-
sider simultaneously the two decompositions of 2,
we see that, in general, each triangle of the one de-

Fig. 29.

composition is broken up into polygons by the seg-
ments which belong to the other decomposition. Let
us add to these segments a sufficient number of others
to reduce each of these polygons to triangles, and
apply the two resulting methods of decompositions to
P, and P, thus breaking them up into corresponding
triangles. Then, evidently the two polygons 7, and
P, are each decomposed into the same number of tri-
angles, which are respectively congruent by pairs.
Consequently, the two polygons are, by definition, of
equal area.

The proof of the second part of the theorem fol-
lows without difficulty.

We define, in the usual manner, the terms: rect-
angle, base and height of a parallelogram, base and height
of a triangle.

§ 19. PARALLELOGRAMS AND TRIANGLES HAVING
EQUAL BASES AND EQUAL ALTITUDES.
The well known reasoning of Euclid, illustrated
by the accompanying figure, furnishes a proof for the
following theorem :
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TueoreM 26. Two parallelograms having equal
bases and equal altitudes are also of equal con-
tent.

7

Fig. 3o.

We have also the following well known proposi-
tion:

THEOREM 28, Any triangle ARC is always of
equal area to a certain parallelogram having
an equal base and an altitude half as great as
that of the triangle.

Proor. Bisect AC in D
and AC in £. and exterd
the line NE to F. makirg
EFequal to DE. Then. the

. . _E___ F tnangles DEC and F7E
are congruent toeach othicr,
and. consequently. the -

e .5 angie NFC and the par-
¥ s 3lclogram L RFD are cof
eJual area.

From theorems I3 and 16, we have 21 once, by aid
of theorem T4 the following proposizion.

¢

Turorrm 200 Two tmangles havirg e5ual hases
and egual &.UTndes have als0 £Jual oonETL

1t is wenal 10 show that two Tangies hawing eguzl
bases and egual altimndes are glwaas of eruzlizrea. It
B 0 de rematked. however, that VS Lomorsreeiion
CRYNO? he MANE W houi DR GG 7SI G0 07 L0



THE THEORY OF PLANE AREAS 61

medes. In fact, we may easily construct in our non-
archimedean geometry (see § 12, p. 34) two triangles
so that they-shall have equal bases and equal alti-
tudes and, consequently, by theorem 27, must be of
equal content, but which are not, however, of equal
area. As such an example, we may take the two tri-
angles 4BC and 48D having each the base 48=1
and the altitude 1, where the vertex of the first triangle
is situated perpendicularly above 4, and in the second
triangle the foot #of the perpendicular let fall from
the vertex D upon the base is so situated that 4 F=1.

The remaining propositions of elementary geom-
etry concerning the equal content of polygons, and
in particular the pythagorian theorem, are all simple -
consequences of the theorems which we have already
given. In the further development of the theory of
area, we meet, however, with an essential difficulty.
In fact, the discussion so far leaves it still in doubt
whether all polygons are not, perhaps, of equal con-
tent. In this case, all of the propositions which we
have given would be devoid of meaning and hence of
no value. Furthermore, the more general question
also arises as to whether two rectangles of equal con-
tent and having one side in common, do not also have
their other sides congruent ; that is to say, whether a
rectangle is not definitely determined by means of a
side and its area. As -a closer investigation shows,
in order to answer this question, we need to make use
of the converse of theorem 27. This may be stated as
follows:

THEOREM 28. If two triangles have equal con-
tent and equal bases, they have also equal alti-
tudes.
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This fundamental theorem is to be found in the
first book of Euclid’s Elements as proposition 39. In
the demonstration of this theorem, however, Euclid
appeals to the general proposition relating to magni-
tudes: ¢“Kal 76 hov T0d pépovs peifév &orw”’—a method
of procedure which amounts to the same thing as in-
troducing a new geometrical axiom concerning areas.

It is now possible to establish the above theorem
and hence the theory of areas.in the manner we have
proposed, that is to say, with the help of the plane
axioms and without making use of the axiom of Archi-
medes. In order to show this, it is necessary to in-
troduce the idea of the measure of area.

§ 200 THE MEASURE OF AREA OF TRIANGLES AND
POLYGONS.

DerFiNiTION. If in a triangle 4BC, having the
sides @, 4, ¢, we construct the two altitudes 2,—= 4D,
h,—= BE, then, according to theorem 22, it follows
from the similarity of the
triangles BCE and ACD,
that we have the propor-
tion

a:hy,=0b:h,;
that is, we have
Fig. 32. d’/l,:b'/l,.

This shows that the product of the base and the cor-
responding altitude of a triangle is the same which-
ever side is selected as the base. The half of this
product of the base and the altitude of a triangle A is
called the measure of area of the triangle A and we de-
note it by F(A).
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A segment joining a vertex of a triangle with a
point of the opposite side is called a transversal. A
transversal divides the given triangle into two others
having the same altitude and having bases which lie
in the same straight line. Such a decomposition is
called a transversal decomposition of the triangle.

TaeorEM 29. If a triangle A is decomposed by
means of arbitrary straight lines into a finite
number of triangles A, then the measure of
area of A is equal to the sum of the measures
of area of the separate triangles A,.

Proor. From the distributive law of our algebra
of segments, it follows immediately that the measure
of area of an arbitrary triangle is equal to the sum of
the measures of area of two such triangles as arise
from any transversal de-
composition of the given
triangle. The repeated
application of this prop-
osition shows that the
measure of area of any
triangle is equal to the
sum of the measures of
area of all the triangles arising by applying the trans-
versal decomposition an arbitrary number of times in
succession.

In order to establish the corresponding proof for
an arbitrary decomposition of the triangle A into the
triangles A,, draw from the vertex A4 of the given tri-
angle A a transversal through each of the points of
division of the required decomposition ; that is to say,
draw a transversal through each vertex of the triangles
A, By means of these transversals, the given tri-

Fig. 33. .
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angle A is decomposed into certain triangles A,. Each
of these triangles A, is broken up by the segments
which determined this decom-
position into certain triangles
and quadrilaterals. If, now, in
each of the quadrilaterals, we
draw a diagonal, then each tri-
angle A, is decomposed into
certain other triangles A,,. We
shall now show that the de-
composition into the triangles
A,, is for the triangles A,, as
well as for the triangles A,,
nothing else than a series of
transversal decompositions. In fact, it is at once evi-
dent that any decomposition of a triangle into partial
triangles may always be affected by a series of trans-
versal decompositions, providing, in this decomposi-
tion, points of division do not exist within the triangle,
and further, that at least one side of the triangle re-
mains free from points of division.

We easily see that these conditions hold for the
triangles A,. In fact, the interior of each of these tri-
angles, as also one side, namely, the side opposite the
point A4, contains no points of division.

Likewise, for each of the triangles A,, the decom-
position into A, is reducible to transversal decompo-
sitions. Let us consider a triangle A,. Among the
transversals of the triangle A emanating from the
point 4, there is always a definite one to be found
which either coincides with a side of A,, or which it-
self divides A, into two triangles. In the first case,
the side in question always remains free from further
points of division by the decomposition into the tri-
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angles A,. In the second case, the segment of the
transversal contained within the triangle A, is a side
of the two triangles arising from the division, and this
side certainly remains free from further points of divi-
sion. :

According to the considerations set forth at the be-
ginning of this demonstration, the measure of area
F(A) of the triangle A is equal to the sum of the
measures of area /(A,) of all the triangles A, and this
sum is in turn equal to the sum of all the measures of
area F(A,). However, the sum of the measures of
area #(A,) of all the triangles A, is also equal to the
sum of the measures of area #(4A,). Consequently,
we have finally that the measure of area #(A) is also
equal to the sum of all the measures of area 7(A,),
and with this conclusion our demonstration is com-
pleted.

DeriniTION. If we define the measure of area F(P)
of a polygon as the sum of the measures of area of all
the triangles into which the polygon is, by a definite
decomposition, divided, then upon the basis of theo-
rem 29 and by a process of reasoning similar to that
which we have employed in § 18 to prove theorem 24,
we know that the measure of area of a polygon is inde
pendent of the manner of decomposition into triangles
and, consequently, is definitely determined by the pol-
ygon itself. From this we obtain, by aid of theorem
29, the result that polygons of egual area have also equal
measures of area.

Furthermore, if P and Q are two polygons of equal
content, then there must exist, according to the above
definition, two other polygons P’ and ' of equal area,
such that the polygon composed of 2 and # shall be
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of equal area with the polygon formed by combining
the polygons Q and (. From the two equations

FP+PY=F(Q+ Q)

F(PYy=F(Q),
we easily deduce the equation
F(P)=F(Q);

that is to say, polygons of equal content have also equal
measure of area.

From this last statement, we obtain immediately
the proof of theorem 28. If we denote the equal bases
of the two triangles by ¢ and the corresponding alti-
tudes by % and #', respectively, then we may conclude’
from the assumed equality of content of the two tri-
angles that they must also have equal measures of
area; that is to say, it follows that

1l =fgh’
and, consequently, dividing by }g, we get
h=N,

which 1s the statement made in theorem 28.

§ 21. EQUALITY OF CONTENT AND THE MEASURE
OF AREA.

In § 20 we have found that polygons having equal
content have also equal measures of area. The con-
verse of this is also true.

In order to prove the converse, let us consider two
triangles 4BC and AB'C’ having a common right
angle at 4. The measures of area of these two tri-
angles are expressed by the formulae

F(ABCY=13}A4B-AC,
F(AB'CY=}4B -AC".
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We now assume that these measures of area are equa
to each other, and consequently we have

AB-AC=AB'-AC’,

or
AB:AB =AC': AC.
c
¢
A B BI

Fig. 35.

From this proposition, it follows, according to theo-
rem 23, that the two straight lines BC' and B'C are
parallel, and hence, by theorem 27, the two triangles
BC'B' and BC'C are of equal content. By the addi-
tion of the triangle 4BC’, it follows that the two tri-
angles ABC and AB'C’ are of equal content. We
have then shown that two right triangles having the
same measure of area are always of equal content.

Take now any arbitrary triangle having the base g
and the altitude 2. Then, according to theorem 27,
it has equal content with a right triangle having the
two sides g and 4. Since the original triangle had
evidently the same measure of area as the right tri-
angle, it follows that, in the above consideration, the
restriction toright triangles was not necessary. Hence,
two arbitrary triangles with equal measures of area are
also of equal content.

Moreover, let us suppose 2 to be any polygon
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having the measure of area ¢ and let 2 be decomposed
into » triangles having respectively the measures of

area g, g gy -+ -3 &» Then, we have

E=H T & T &+t 8w
Construct now a triangle 48C having the base
AB =g and the altitude 2=1. Take, upon the base
of this triangle, the points 4,, 4,,...., 4,_,, so that
s=Ad4, =44y ...., §. =4, 1A, §.=A4,,B.

< En

Ana B

Fig. 36.

Since the triangles composing the polygon 2 have re-
spectively the same measures of area as the triangles
AA,C, A4,4,C,...., A4, ,4, .C, 4, ,BC, it follows
from what has already been demonstrated that they
have also the same content as these triangles. Con-
sequently, the polygon £ and a triangle, having the
base g and the altitude £Z=1 are of equal content.
From this, it follows, by the application of theorem
24, that two polygons having equal measures of area
are always of equal content.

We can now combine the proposition of this sec-
tion with that demonstrated in the last, and thus ob-

tain the following theorem:

THeOorREM 30. Two polygons of equal content
have always equal measures of area. Con-
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versely, two polygons having equal measures
of area are always of equal content.

In particular, if two rectangles are of equal content
and have one side in common, then their remaining
sides are respectively congruent. Hence, we have the
following proposition: -

TaeoreM 31. If we decompose a rectangle into
several triangles by means of straight lines and
then omit one of these triangles, we can no
longer make up completely the rectangle from
the triangles which remain.

This theorem has been demonstrated by F. Schur*
and by W. Killing,t but by making use of the axiom
of Archimedes. By O. Stolz,} it has been regarded
as an axiom. In the foregoing discussion, it has been
shown that it is completely independent of the axiom
of Archimedes. However, when we disregard the ax-
iom of Archimedes, this theorem (31) is not sufficient
of itself to enable us to demonstrate Euclid’s theo-
rem concerning the equality of altitudes of triangles
having equal content and equal bases. (Theorem 28.)

In the demonstration of theorems 28, 29, and 30,
we have employed essentially the algebra of segments
introduced in § 15, p. 46, and as this depends sub-
stantially upon Pascal’s theorem (theorem 21), we see
that this theorem is really the corner-stone in the the-
ory of areas. We may, by the aid of theorems 27 and
28, easily establish the converse of Pascal’s theorem.

Of two polygons P and Q, we call P the smaller
or larger in content according as the measure of area

* Sitsungsberichte dey Dorpater Naturf. Ges. 1892.
t Grundlagen der Geometrie, Vol. 2, Chapter 5, § 5, 1898.
t Monatshefte fiir Matk. ynd Fhys, 1894,
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F(P) is less or greater than the measure of area /(Q).
From what has already been said, it is clear that the
notions, equal content, smaller content, larger con-
tent, are mutually exclusive. Moreover, we easily see
that a polygon, which lies wholly within another pol-
ygon, must always be of smaller content than the ex-
terior one.

‘With this we have established the important the-
orems in the theory of areas.




DESARGUES’S THEOREM.

§ 22. DESARGUES'S THEOREM AND ITS DEMONSTRA-
TION FOR PLANE GEOMETRY BY AID OF
THE AXIOMS OF CONGRUENCE.

F the axioms given in §§ 1-8, pp. 1-26, those
of groups II-V are in part linear and in part
plane axioms. Axioms 3-7 of group I are the only
space axioms. In order to show clearly the signifi-
cance of these axioms of space, let us assume a plane
geometry and investigate, in general, the conditipns
for which this plane geometry may be regarded as a
part of a geometry of space in which at least the ax-
ioms of groups I-III are all fulfilled.

Upon the basis of the axioms of groups I-111, it is
well known that the so-called theorem of Desargues
may be easily demonstrated. This theorem relates to
points of intersection in a plane. Let us assume in
particular that the straight line, upon which are sit-
uated the points of intersection of the homologous
sides of the two triangles, is the straight line which
we call the straight line at infinity. We will desig-
nate the theorem which arises in this case, together
with its converse, as the theorem of Desargues. This
theorem is as follows:

TueoreM 32. (Desargues’s theorem.) When two
triangles are so situated in a plane that their
homologous sides are respectively parallel, then
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the lines joining the homologous vertices pass
through one and the same point, or are parallel
to one another.

Conversely, if two triangles are so situated
in a plane that the straight lines joining the
homologous vertices intersect in a common
point, or are parallel to one another, and, fur

_thermore, if two pairs of homologous sides arce
parallel to each other, then the third sides of
the two triangles are also parallel to each other.

Fig. 37.

As we have already mentioned, theorem 32 is a
consequence of the axioms I-III. Because of this
fact, the validity of Desargues’s theorem in the plane
is, in any case, a necessary condition that the geom-
etry of this plane may be regarded as a part of a geom-
etry of space in which the axioms of groups I-III are
all fulfilled.

Let us assume, as in §§ 13-21, pp. 37-70, that we
have a plane geometry in which the axioms I, 1-2 and -
II-IV all hold and, also, that we have introduced in
this geometry an algebra of segments conforming to
§ 15. :
Now, as has already been established in § 17, there
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may be made to correspond to each point in the plane

a pair of segments (x, y) and to each straight line a

ratio of three segments (%:7:w), so that the linear

equation .
ux+ovy+ w=0

expresses the condition that the point is situated upon
the straight line. The system composed of- all the
segments in our geometry forms, according to § 17, a
domain of numbers for which the properties (1-16),
enumerated in § 13, are valid. We can, therefore, by
means of this domain of numbers, construct a geom-
etry of space in a manner similar to that already em-
ployed in § 9 or in § 12, where we made use of the
systems of numbers @ and Q(#), respectively. For
this purpose, we assume that a system of three seg-
ments (x, », z) shall represent a point, and that the
ratio of four segments (#:2:w:7) shall represent a
plane; while a straight line is defined as the intersec-
tion of two planes. Hence, the linear equation

ux~+vy+ws+r=0

expresses the fact that the point (x, y, 2) lies in the
plane (#:v:w:7). Finally, we determine the arrange-
ment of the points upon a straight line, or the points
of a plane with respect to a straight line situated in
this plane, or the arrangement of the points in space
with respect to a plane, by means of inequalities in a
manner similar to the method employed for the plane
in §9.

Since we obtain again the original plane geometry
by putting z=0, we know that our plane geometry
can be regarded as a part of geometry of space. Now,
the validity of Desargues’s theorem is, according to the
above considcrations, a necessary condition for this
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result. Hence, in the assumed plane geometry, .t
follows that Desargues’s theorem must also hold.

It will be seen that the result just stated may also
be deduced without difficulty from theorem 23 in the
theory of proportion.

§23. THE IMPOSSIBILITY OF DEMONSTRATING DE-
SARGUES'S THEOREM FOR THE PLANE WITH-
OUT THE HELP OF THE AXIOMS
OF CONGRUENCE. . *

We shall now investigate the question whether or
no in plane geometry Desargues’s theorem may be
deduced without the assistance of the axioms of con-
gruence. This leads us to the following result:

THEOREM 33. A plane geometry exists in which
the axioms I 1-2, II-III, IV 1-5, V, that is to
say, all linear and all plane axioms with the
exception of axiom IV, 6 of congruence, are
fulfilled, but in which the theorem of Desargues
(theorem 32) is not valid. Desargues’s theorem
is not, therefore, a consequence solely of the
axioms mentioned ; for, its demonstration ne-
cessitates either the space axioms or all of the
axioms of congruence.

Proor. Select in the ordinary plane geometry (the
possibility of which has already been demonstrated in
§ 9, pp. 27-30) any two straight lines perpendicular
to each other as the axes of xandy. Construct about
the origin O of this system of co-ordinates an ellipse
having the major and minor axes equal to 1 and }, re-
spectively. Finally, let # denote the point situated
upon the positive x-axis at the distance § from O.

*See also a recent paper by F. R. Moulton on ** Simple Non-desargugesian
Geometry,"' Transactions of the Amer, Math. Soc., April, 1902.—77.
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Consider all of the circles which cut the ellipse in
four real points. . These points may be either distinct
or in any way coincident. Of all the points situated
upon these circles, we shall attempt to determine the
one which lies upon the x-axis farthest from the ori-
gin. For this purpose, let us begin with an arbitrary
circle cutting the ellipse in four distinct points and
intersecting the positive x-axis in the point C. Sup-
pose this circle then turned about the point C in
such a manner that two or more of the four points of
intersection with the ellipse finally coincide in a single
point 4, while the rest of them remain real. Increase
now the resulting tangent circle in such a way that 4
always remains a point of tangency with the ellipse.
In this way we obtain a circle which is either tangent
to the ellipse in also a second point B, or which has
with the ellipse a four-point contact in 4. Moreover,
this circle cuts the positive x-axis in a point more re-
mote than C. The desired farthest point will accord-
ingly be found among those points of intersection of
the positive x axis by circles lying exterior to the
ellipse and being doubly tangent to it. All such cir-
cles must lie, as we can easily see, symmetrically with
repect to the y-axis. Let &, 4 be the co-ordinates of
any point on the ellipse. Then an easy calculation
shows that the circle, which is symmetrical with re-
spect to y-axis and tangent to the ellipse at this point,
cuts off from the positive x-axis the segment

The greatest possible value of this expression occurs
for =4 and, hence, is equal to }|V'7|. Since the
point on the x axis which we have denoted by # has
for its abscissa the value §>§|l/7l, it follows that



76 THE FOUNDATIONS OF GEOMETRY.

among the circles cutting the ellipse four times there is
certainly none whick passes through the point F.

We will now construct a new plane geometry in
the following manner. As points in this new geom-
etry, let us take the points of the (xy)-plane. We
will define a straight line of our new geometry in the
following manner. Every straight line of the (xy)-
plane which is either tangent to the fixed ellipse, or
does not cut it at all, is taken unchanged as a straight
line of the new geometry. However, when any straight
line g of the (xy)-plane cuts the ellipse, say in the
points P and Q, we will then define the correspond- '
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Fig. 38.

ing straight line of the new geometry as follows. Con-
struct a circle passing through the points 2 and Q
and the fixed point /. From what has just been said,
this circle will have no other point in common with
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the ellipse. We will now take the broken line, con-
sisting of the arc PQ just mentioned and the two
parts of the straight line ¢ extending outward indefi-
nitely from the points Zand Q, as the required straight
line in our new geometry. Let us suppose all of the
broken lines constructed which correspond to straight
lines of the (xy)-plane. We have then a system of
broken lines which, considered as straight lines of our
new geometry, evidently satisfy the axioms I, 1-2 and
ITI. By a convention as to the actual arrangement
of the points and the straight lines in our new geom-
ctry, we have also the axioms II fulfilled.

Moreover, we will call two segments A8 and 4’5’
congruent in this new geometry, if the broken line
extending between 4 and B has equal length, in the
ordinary sense of the word, with the broken line ex-
tending from 4’ to B'.

Finally, we need a convention concerning the con-
gruence of angles. So long as neither of the vertices
of the angles to be compared lies upon the ellipse, we
call the two angles congruent to each other, if they
are equal in the ordinary sense. In all other cases
we make the following convention. Let 4, B, C be
points which follow one another in this order upon a
straight line of our new geometry, and let 4', B, C’
be also points which lie in this order upon another
straight line of our new geometry. Let D be a point
iying outside of the straightdige ABC and D' be a
point outside of the straight, 4’8'C’. We will now
say that, in our new geometry; the angles between
these straight lines fulfill the congruences

LABD=/ A'BD and /CBD—=/C'BD,

whenever the natural angles between the correspond-

.
Lo e
{
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ing broken lines of the ordinary geometry fulfill the
proportion

/ABD:/CBD=/A'B'D :/C'BD.

These conventions render the axioms IV, 1-5and V
valid.

Fig. 39.

In order to see that Desargues’s theorem does not
hold for our new geometry, let us consider the follow-
ing three ordinary straight lines of the (xy)-plane;
viz., the axis of x, the axis of y, and the straight line
joining the two points of the ellipse (3, 2) and (—3,
—2). Since these three ordinary straight lines pass
through the origin, we can easily construct two tri-
angles so that their vertices shall lie respectively upon
these three straight lines and their homologous sides
shall be parallel and all three sides shall lie exterior to
the ellipse. As we may see from figure 40, or show
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by an easy calculation, the broken lines arising from
the three straight lines in question do not intersect in
a common point. Hence, it follows that Desargues’s

Fig. 40.

theorem certainly does not hold for this particular
plane geometry in which we have constructed the two
triangles just considered.

This new geometry serves at the same time as an
example of a plane geometry in which the axioms I,
1-2, II-111, IV, 1-5, V all hold, but which cannot be
considered as a part of a geometry of space.

§ 24. INTRODUCTION OF AN ALGEBRA OF SEGMENTS
BASED UPON DESARGUES'S THEOREM AND INDE-
PENDENT OF THE AXIOMS OF CONGRUENCE.*

In order to see fully the significance of Desargues’s
theorem (theorem 32), let us take as the basis of our
consideration a plane geometry where all of the ax-

*Discussed also by Moore in a paper before the Am. Math. Soc., Jan.,,
1902. See Trans. Am. Math. Soc.—17.
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ioms I 1-2, II-1II are valid, that is to say, where all
of the plane axioms of the first three groups hold, and
then introduce into this geometry, in the following
manner, a new algebra of segments independent of
the axioms of congruence.

Take in the plane two fixed straight lines inter-
secting in O, and consider only such segments as have
O for their origin and their other extremity in one of
the fixed lines. We will regard the point O itself as
a segment and call it the segment 0. We will indi-
cate this fact by writing

00=0, or 0=00.
Let £ and £’ be two definite points situated re-
spectively upon the two fixed straight lines through

O. Then, define the two segments OF and QF’ as
the segment 1 and write accordingly

OE=O0F =1 or 1=0E=0€F'.

We will call the straight line ££’, for brevity, the
unit-line. If, furthermore, 4 and 4’ are points upon

Fig. 41.

the straight lines OF and OF’, respectively, and, if
the straight line 44’ joining them is parallel to £Z’,
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then we will say that the segments OA4 and 04’ are
equal to one another, and write

04 =04, or 04'=0A.

In order now to define the sim of the segments
a—= 04 and 4= OB, we construct 44’ parallel to the
unit-line £Z’ and draw through 4’ a parallel to OF
and through B a parallel to OE’. Let these two par-
allels intersect in A4”. Finally, draw through 4” a
straight line parallel to the unit-line £Z’. Let this
parallel cut the two fixed lines OF and OF’ in C and
C’, respectively. Then ¢=0C=0C" is called the
sum of the segments a= 04 and 6= 0B. We indi-
cate this by writing

c=a-+84, or at+b=c.

In order to define the product of a segment ¢ = 04
by a segment 4= OB, we make use of exactly the
same construction as employed in § 15, except that,
in place’ of the sides of a right angle, we make use
here of the straight lines OF and OZ’. The construc-

Fig. 42.

tion is consequently as follows. Determine upon O£’
a point 4’ so that 44’ is parallel to the unit-line £Z’,
and join Z with 4’. Then draw through B a straight
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line parallel to £4’. This parallel will intersect the
fixed straight line OZ in the point C’, and we call
¢=O0C' the product of the segment @ = 04 by the
segment 4= OB. We indicate this relation by writing

c=ab, or ab=c.

§25. THE COMMUTATIVE AND THE ASSOCIATIVE
LAW OF ADDITION FOR OUR NEW ALGE-
BRA OF SEGMENTS.

In this section, we shall investigate the laws of
operation, as enumerated in § 13, in order to see which
of these hold for our new algebra of segments, when
we base our considerations upon a plane geometry in
which axioms I 1-2, II-III are all fulfilled, and, more-
over, in which Desargues’s theorem also holds.

First of all, we shall show that, for the addition of
segments as defined in § 24, the commutative law

a+&:&—|—a

holds. Let ' .
a=0A4= 04"
b=0B=0F8'".

Hence, 44" and BB’ are, according to our conven-
tion, parallel to the
unit-line.  Construct
the points 4” and B”
by drawing 4’4" and
B'B" parallel to 04
and also A4A” and
BA' parallel to 04.
We see at once that
) the line 4” B” is paral-

Fig 43 lel to 44’ as the com-
mutative law requires. . We shall show the validity of
this statement by the aid of Desargues’s theorem in
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the following manner. Denote the point of intersec-
tion of 48" and 4’4" by F and that of B4"” and B'B’
by D. Then, in the triangles 44'F and BB D, the
homologous sides are parallel to each other. By De-
sargues’s theorem, it follows that the three points
O, F, D lie in a straight line. In consequence of this
condition, the two triangles 044’ and DB” A" lie in
such a way that the lines joining the corresponding
vertices pass through the same point #, and since the
homologous sides 04 and DB”, as also 04’ and DA4",
are parallel to each other, then, according to the sec-
ond part of Desargues’s thcorem (theorem 32), the
third sides 44’ and B” A" are parallel to each other.
To prove the associative law of addition

a4+ +O)=(a+8)+o

we shall make use of figure 44. In consequence of
the commutative law of addition just demonstrated,
the above formula states that the straight line 4”B"

atbtc

bt+c IA i
(S 7K
X0

a+b

a+ b+ c)=(a+b)+¢
Fig. 44.

must be parallel to the unit-line. The validity of this
statement’is evident, since the shaded part of figure
44 corresponds exactly with figure 43,
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§26. THE ASSOCIATIVE LAW OF MULTIPLICATION
AND THE TWO DISTRIBUTIVE LAWS FOR
THE NEW ALGEBRA OF SEGMENTS.

The associative law of multiplication
a(bc)y=(ab)c
has also a place in our new algebra of segments.
Let there be given upon the first of the two fixed
straight lines through O the segments
1=04, $=0C, ¢c=04'

C C’
b be

a(bc)y=(ab)e -
Fig. 45.

\
\A’
c

(o}
->

and upon the second of these straight lines, the seg-
ments
a=0GC, b=08A5.
In order to construct the segments
bc= 08B and b= 0C",
ab= 0D,
(ad)c=0D,
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in accordance with § 24, draw A'B’ parallel to 4B,
B'C’ parallel to BC, CD parallel to 4G, and 4'D’ par-
allel to 4D. We see at once that the given law
amounts to the same as saying that CD must also be
parallel to C'D’'. Denote the point of intersection of
the straight lines 4’2’ and B'C’' by F’ and that of the
straight lines 40 and BC by /. Then the triangles
ABF and A'B'F’ have their homologous sides par-
allel to each other, and, according to Desargues’s
theorem, the three points O, F, F’ must lie in a
straight line. Because of these conditions, we can
apply the second part of Desargues’s theorem to the
two triangle COF and C'D’'F’, and hence show that,
in fact, CD is parallel to C'D'.

Finally, upon the basis of Desargues’s theorem,
we shall show that the two distributive laws

a(b+c)y=ab+ac

and
(@+8)c=ac+bc

hold for our algebra of segments.
In the proof of the first one of these laws, we shall
make use of figure 46.* In this figure, we have

b=04" ¢c=0C',
ab=0~F, ab=0A4", ac=0C", etc.

In the same figure, B"” D, is parallel to C"D,, which
is parallel to the fixed straight line OA4’, and B'D, is
parallel to C'D,, which is parallel to the fixed straight
line 0A4"”. Moreover, we have 4’4" parallel to C'C",
and 4'B"” parallel to B'4", parallel to F'D,, parallel
to /' D,.

* Figures 46, 47, and 48 were designed by Dr. Von Schaper, as have also
the details of the d rations relating to these figures.
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Our proposition amounts to asserting that we must
nccessarily have also
F'F" parallel to 4°’4” and to C'C".
We construct the following auxiliary lines:
F"J parallel to the fixed straight line 0A4’,
F'_/ € AT 66 ‘¢ 04"
Let us denote the points of intersection of the straight
lines C”"D, and C'D,, C"D, and F'/, C'D, and #"/
by G, H,, H, respectively. Finally, we obtain the
other auxiliary lines indicated in the figure by joining
the points already constructed.

77

T Ty gy 1

:;‘;{,\/C” e D2 §
e ;,/{;,/} YL /I
b ab c

a(b+4c)=ab+ ac
Fig 46.

In the two triangles 4°'B” C" and F'D,G, the straight
lines joining homologous vertices are parallel to each
other. According to the second part of Desargues’s
theorem, it follows, therefore, that

A'C" is parallel to 7'G.
In the two triangles 4'C”F" and F'GH,, the straight
lines joining the homologous vertices are also par-
allel to each other. From the properties already dem-
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onstrated, it follows by virtue of the second part of
Desargues’s theorem that we must have

A'F" parallel to F'H,.

Since in the two horizontally shaded triangles O4'F’
and /HA,F' the homologous sides are parallel, Desar- *
gues’s theorem shows that the three straight lines
joining the homologous vertices, viz.:

0-,’ A’H’z, F"F

all intersect in one and the same point, say in 2.
In the same way, we have necessarily

A" F' parallel to F"'H,

and since, in the two obliquely shaded triangles 04" F’

and /H F", the homologous sides are parallel, then,

in consequence of Desargues’s theorem, the three

straight lines joining the homologous vertices, viz.:
0/, A"H,, F'F",

all intersect likewise in the same poéint, namely, in

point 2.

Moreover, in the triangles 04'4"” and JH,H,, the
straight lines joining the homologous vertices all pass
through this same point 2, and, consequently, it fol-
lows that we have

H H, parallel to 4’4",
and, therefore,
H H, is parallel to C'C".

Finally, let us consider the figure F"H,C'C"H,F'F".
Since, in this figure, we have

F"H, parallel to C'F", parallel to C"H,,
H20' 6 “ F"C"’ 6« ‘¢ HIF"
c'c” 13 13 '[111['..',
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we recognize here again figure 43, which we have
already made use of in § 25 to prove the commutative
law of addition. The conclusions, analogous to those
which we reached there, show that we must have

F'F" parallel to H H,,
and, consequently, we must have also
F'F” parallel to 4’4",
which result concludes our demonstration.
' To prove the second formula of the distributive

law, we make use of an entirely different ﬁgute,—-
figure 47. In this figure, we have

ac (-]
(@a+8)c=acH bc
Fig. 47.
1=0D, a=0A4, a= 0B, $=0G, c=0D,
ac=0A4', ac=00F, bc=0G', etc.,
and, furthermore, we have

GH parallel to G'H", parallel to the fixed line 04,
AH ‘ 3 A'H'" ‘¢ ¢ 6 ¢« OB.
We have also
AB parallel to 4'B’
BD ‘¢ s« BD
DG 6 “ DG
H/ 6t “ H’./'.
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That which we are to prove amounts, then, to dem-
onstrating that :

DJ must be parallel to D'/".

Denote the points in which BD and GD intersect
the straight line 44 by C and F, respectively, and
the points in which 8’0’ and G’ D' intersect the straight
line 4"H' by C' and F’, respectively. Finally, draw
the auxiliary lines #/ and #"/’, indicated in the figure
by dotted lines.

In the triangles 4 BC and 4'B'C’, the homologous
sides are parallel and, consequently, by Desargues’s
theorem the three points O, C, C’ lie on a straight
line. Then, by considering in the same way the tri-
angles CDF and C D'F’, it follows that the points
0, F, F' lie upon the same straight line and like-
wise, from a consideration of the triangles #GH and
F'G'H', we find the points O, H, H’' to be situated
on a straight line. Now, in the triangles F// and
F'H']', the straight lines joining the homologous
vertices all pass through the same point O, and,
hence, as a consequence of the second part of De-
sargues’s theorem, the straight lines #/ and '/’ must
also be parallel to each other. Finally, a considera-
tion of the triangles DF/ and D'F’J’ shows that the
straight lines D/ and D'/’ are parallel to each other
and with this our proof is completed.

§ 27. EQUATION OF THE STRAIGHT LINE, BASED
UPON THE NEW ALGEBRA OF SEGMENTS.

In §§ 24-26, we have introduced into the plane
geometry an algebra of segments in which the com-
mutative law of addition and that of multiplication,
as well as the two distributive laws, hold. This was
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done upon the assumption that the axioms cited in
§ 24, as also the theorem of Desargues, were valid.
In this section, we shall show how an analytical rep-
resentation of the point and straight line in the plane
is possible upon the basis of this algebra of segments.

DeriniTION. Take the two given fixed straight
lines lying in the plane and intersecting in O as the
axis of x and of y, respectively. Let us suppose any
point P of the plane determined by the two segments
x, y which we obtain upon the x-axis and y-axis, re-
spectively, by drawing through 2P parallels to these
axes. These segments are called the co-ordinates of
the point 2. Upon. the basis of this new algebra of
segments and by aid of Desargues’s theorem, we shall
deduce the following proposition.

THEOREM 34. The co-ordinates x, y of a point on
an arbitrary straight line always satisfy an equa-
tion in these segments of the form

ax+by+c=0.

In this equation, the segments ¢ and & stand
necessarily to the left of the co-ordinates x and
y. The segments @ and 4 are never both zero

and ¢ is an arbitrary segment.
Conversely, every equation in these segments
“and of this form represents always a straight
line in the plane geometry under consideration.

Proor. Suppose that the straight line / passes
through the origin O. Furthermore, let C be a defi-
nite point upon / different from O, and P any arbitrary
point of . Let OA4 and OB be the co-ordinates of C
and x, y be the co-ordinates of . We will denote
the straight line joining the extremities of the seg-
ments x, y by ¢. Finally, through the extremity of
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the segment 1, laid off on the x-axis, draw a straight
line /% parallel to 4B. This parallel cuts off upon the
y-axis the segment ¢. From the second part of De-

Fig. 48.

sargues’s theorem, it follows that the straight line g
is also always parallel to 4B. Since g is always par-
allel to %, it follows that the co-ordinates x, y of the
point 2 must satisfy the equation

4 —l

Moreover, in figure 49 let /' be any arbitrary
straight line in our plane. This straight line will cut
off on the x-axis the segment c= 00’. Now, in the
same figure, draw through O the straight line / par-
allel to /. Let P’ be an arbitrary point on the line /’.
The straight line through #’, parallel to the x-axis,
intersects the straight line /in 2 and cuts off upon
the y-axis the segment y— OB. Finally, through P
and 2’ let parallels to.the y axis cut off on the x-axis
the segments x = 04 and x’' = 04".

We shall now undertake to show that the equation

x=x+¢
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is fulfilled by the segments in question. For this pur-
pose, draw O’ C parallel to the unit-line and likewise
CD parallel to the x-axis and 4.D parallel to the y-axis.

"
Cc’ D’
2N
,— \,
8 P 7= P’
7 . s
#

K ’

o,

I ’ x
yd R

Fig. 49.

'kIII I

x>

Then, to prove our proposition amounts to showing
that we must have necessarily

A'D parallel to O'C.
Let D' be the point of intersection of the straight
lines CD and 4'P’ and draw O’ C’ parallel to the y axis.

Since, in the triangles OCPand O'C’'P’, the straight

lines joining the homologous vertices are parallel, it
follows, by virtue of the second part of Desargues’s
theorem, that we must have '

CP parallel to C'P’.

In a similar way, a consideration of the triangles 4 CP
and A’'C’'P’ shows that we must have

AC parallel to 4'C".
Since, in the triangles 4CD and C’'4’'0’, the homol-
ogous sides are parallel to each other, it follows that
the straight lines 4C’, C4’' and DO’ intersect in a
common point. A consideration of the triangles C’'4’'D
and ACO’ then shows that 4’D and CO’ are parallel
to each other.
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From the two equations already obtained, viz.:
ex—y and ¥'=x+y¢,
follows at once the equation
ex' =y ec.
If we denote, finally, by » the segment which added

to the segment 1 gives the segment 0, then, from this

last equation, we may easily deduce the following
ex' + ny + nec =0,

and this equation is of the form required by theo-

rem 34.

We can now show that the second part of the the-
orem is equally true; for, every linear equation

ax+by+c=0
may evidently be brought into the required form

ex+ ny + nec =0
by a left-sided multiplication by a properly chosen
segment.
It must be expressly stated, however, that, by our
hypothesis, an equation of segments of the form
xa-+yb+ c=0,
where the segments a, 4 stand to the right of the co-
ordinates x, y does not, in general, represent a straight
line. .
In § 30, we shall make an important application
of theorem 34.

§ 28. THE TOTALITY OF SEGMENTS, REGARDED AS
‘A COMPLEX NUMBER SYSTEM.

We see immediately that, for the new algebra of
segments established in § 24, theorems 1-6 of § 13 are
fulfilled.
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Moreover, by aid of Desargues’s theorem, we have
already shown in §§ 25 and 26 that the laws 7-11 of
operation, as given in § 18, are all valid in this algebra
of segments. With the single exception of the com-
mutative law of multiplication, therefore, all of the
theorems of connection hold.

Finally, in order to make possible an order of mag-
nitude of these segments, we make the following con-
vention. Let 4 and B be any two distinct points of
the straight line OE. Suppose then that the four
points O, E, A4, B stand, in conformity with axiom II,
4, in a certain sequence. If this sequence is one of
the following six possible ones, viz.:

ABOE, AOBE, AOEB, OABE, OAEB, OFEAB,

then we will call the segment @ = OA smaller than the
segment 4= OB and indicate the same by writing

a<lb.
On the other hand, if the sequence is one of the six
following ones, viz.:

BAOE, BOAE, BOEA, OBAE, OBEA, OFEBA,

then we will call the segment a = OA greater than the
segment 4= OB, and we write accordingly

a>b.

This convention remains in force whenever 4 or B
coincides with O or £, only then the coinciding points
"are to be regarded as a single point, and, consequently,
we have only to consider the order of three points.
Upon the basis of the axioms of group II, we can
easily show also that, in our algebra of segments, the
laws 13-16 of operation given in § 13 are fulfilled.
Consequently, the totality of all the different segments
forms a complex numbeér system for which the laws
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1-11, 13-16 of § 13 hold; that is to say, all of the
usual laws of operation except the commutative law
of multiplication and the theorem of Archimedes. We
will call such a system, briefly, a desarguesian number
Sysiem. '

§ 29. CONSTRUCTION OF A GEOMETRY OF SPACE BY
AID OF A DESARGUESIAN NUMBER SYSTEM.

Suppose we have given a desarguesian number
system D. Such a system makes possible the con-
struction of a geometry of space in which axioms I,
II, III are all fulfilled.

In order to show this, let us consider any system
of three numbers (x, y, 2) of the desarguesian number
system D as a point, and the ratio of four such num-
bers (#:v:w:7), of which the first three are not 0,
as a plane. However, the systems (#:2:w:7) and
(av:au:aw: ar), where a is any number of D different
from 0, represent the same plane. The existence of

the equation
ux+vy+ws+r=0

expresses the condition that the point (x, y, 2) shall
lie in the plane (#:v:w:7). Finally, we define a
straight line by the aid of a system of two planes
(#:0":':7") and (#":v": w":7""), where we impoge the
condition that it is impossible to find in D two num-
bers @', a” different from zero, such that we have -
simultaneously the relations

a’u':a"“", a’v’:al’vll’ a’w’:[l"w".
A point (x, y, 2) is said to be situated upon this
straight line 7 #":9":w':7"), (":0":2":#")], if it is
common to the two planes (#':9":%':7') and (#": 9":
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w":7""). Two straight lines which contain the same
points are not regarded as being distinct.

By application of the laws 1-11 of § 13, which by
hypothesis hold for the numbers of D, we obtain with-
out difficulty the result that the geometry of space
which we have just constructed satisfies all of the ax-
ioms of groups I and III.

In order that the axioms (II) of order may also be
valid, we adopt the following conventions. Let

@0 2v 2)s (%0 Iy %), (%3 33 25)
be any three points of a straight line
[(@:0": 7", (0" 0" :9")].

Then, the point (x,, J,, 2,) is said to lie between the
other two, if we have fulfilled at least one of the six
following double inequalities:

@ X < Xy < Xy XD 2,
@) N<V<Jp N >Vs> s
(3) 2, < By < %3 z, > 2, > 23

If one of the two double inequalities (1) exists, then
we can easily conclude that either y,=y,=y,, or one
of the two double inequalities (2) exists, and, conse-
quently, either z,— z,—z, or one of the double inequal-
ities (3) must exist. In fact, from the equations

' Wx,+ vy, + w'z, + 7 =0,
wx, 40"y, + w'z,+ 7" =0,
(=1, 2, 3)

we may obtain, by a left-sided multiplication of these
equations by numbers suitably chosen from D and
then adding the resulting equations, a system of equa-
tions of the form '

) Wit 0"y " =0, (i=1, 2, 3).
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In this system, the coefficient #"” is certainly different
from zero, since otherwise the three numbers x,, x,, x,
would be mutually equal.
From )
%, § x, ; Xy
it follows that AL _é "
< wY —= er'*f\&’&
Z zZ

" < e 1l
WS & Uy 5y

and, hence, as a consequence of (4), we have
”'I!-yl + r"'évﬂsz_i_ r"lé 7)"()'3.—*— rll'
and, therefore,
"0 " < e
v ylév AR
Since 7' is different from zero, we'have
<
N g}’, %J’a-
In each of these double inequalities, we must take
either the upper sign throughout, or the middle sign
throughout, or the lower sign throughout.

The preceding considerations show, that, in our
geometry, the linear axioms II, 1-4 of order are all
valid. However, it remains yet to show that, in this
geometry, the plane axiom II, 5 is also valid.

For this purpose let a plane (#:v:w:7) and a
straight line [(#:v:w:7), (4':9":2':7")] in this plane
be given. Let us assume that all the points (x, y, 2)
of the plane (#:7:w:7r), for which we have the ex-
pression #'x + v'y+ w'z -+ ' greater than or less than
zero, lie respectively upon the one side or upon the
other side of the given straight line. We have then
only to show that this convention is in accordance
with the preceding statements. This, however, is
easily done.
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We have thus shown that all of the axioms of
groups I, II, III are fulfilled in the geometry of space
which we have obtained in the above indicated man-
ner from the desarguesian number system D. Re-
membering now that the theorem of Desarguesis a
consequence of the axioms I, II, III, we see that the
proposition just stated is exactly the converse of the
result reached in § 28.

§ 30. SIGNIFICANCE OF DESARGUES'S THEOREM.

If, in a plane geometry, axioms I, 1-2, II, III are
all fulfilled and, moreover, if the theorem of Desar-
gues holds, then, according to §§ 24-28, it is always
possible to introduce into this geometry an algebra of
segments to which the laws 1-11, 13-16 of § 13 are
applicable. We will now consider the totality of these
segments as a complex number system and construct,
upon the basis of this system, a geometry of space, in
accordance with § 29, in which all of the axioms I, 11,
III hold.

In this geometry of space, we shall consider only
the points (x, », 0) and those straight lines upon
which such points lie. We have then a plane geom-
etry which must, if we take into account the proposi-
tion established in § 30, coincide exactly with the
plane geometry proposed at the beginning. Hence,
we are led to the following proposition, which may be
regarded as the objective point of the entire discus-
sion of the present chapter.

TueoreM 35. If, in a plane geometry, axioms I,
1-2, I, III are all fulfilled, then the existence of
Desargues’s theorem is the necessary and suffi-
cient condition that this plane geometry may

. —— -
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be regarded as a part of a geometry of space in
which all of the axioms I, II, III are fulfilled.

The theorem of Desargues may be characterized
for plane geometry as being, so to speak, the result
of the elimination of the space axioms.

The results obtained so far put us now in the posi-
tion to show that every geometry of space in which
axioms I, II, III are all fulfilled may be always re-
garded as a part of a ‘‘geometry of any. number of di-
mensions whatever.” By a geometry of an arbitrary
number of dimensions is to be understood the totality
of all points, straight lines, planes, and other linear
elements, for which the corresponding axioms of con-
nection and of order, as well as the axiom of paral-
lels, are all valid.
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PASCAL’S THEOREM.

§ 31. TWO THEOREMS CONCERNING THE POSSIBIL-
ITY OF PROVING PASCAL'S THEOREM.

S is well known, Desargues’s theorem (theorem 32)
may be demonstrated by the aid of axioms I, II,
IIT; that is to say, by the use, essentially, of the ax-
ioms of space. In § 23, we have shown that the dem-
onstration of this theorem without the aid of the space
axioms of group I and without the axioms of congru-
ence (group IV) is impossible, even if we make use
of the axiom of Archimedes.

Upon the basis of axioms I, 1-2, II, III, IV and,
hence, by the exclusion of the axioms of space but
with the assistance, essentially, of the axioms of con-
gruence, we have, in § 14, deduced Pascal's theorem
and, consequently, according to § 22, also Desargues’s
theorem. The question arises as to whether Pascal’s
theorem can be demonstrated without the assistance
of the axioms of congruence. Our investigation will
show that in this respect Pascal’s theorem is very dif-
ferent from Desargues’s theorem; for, in the demon-
stration of Pascal’s theorem, the admission or exclu-
sion of the axiom of Archimedes is of decided influence.
We may combine the essential results of our investi-
gation in the two following theorems.

THEOREM 36. Pascal’s theorem (theorem 21) may
be demonstrated by means of the axioms I, II,
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III, V; that is to say, without the assistance
of the axioms of congruence and with the aid
of the axiom of Archimedes.

TreoreM 37. Pascal’s theorem (theorem 21) can-
not be demonstrated by means of the axioms I,
II, IIT alone; that is to say, by exclusion of
the axioms of congruence and also the axiom
of Archimedes.

‘In the statement of these two theorems, we may,
by virtue of the general theorem 35, replace the space
axioms I, 3-7 by the plane condition that Desargues’s
theorem (theorem 32) shall be valid.

§ 32. THE COMMUTATIVE LAW OF MULTIPLICATION
FOR AN ARCHIMEDEAN NUMBER SYSTEM.

The demonstration of theorems 36 and 37 rests
essentially upon certain mutual relations concerning
the laws of operation and the fundamental proposi-
tions of arithmetic, a knowledge of which is of itself
of interest. We will state the two following theorems.

THEOREM 38. For an archimedean number sys-
tem, the commutative law of multiplication isa
necessary consequence of the remaining laws of
operation ; that is to say, if a number system
possesses the properties 1-11, 13-17 given in
§ 13, it follows necessarily that this system sat-
isfies also formula 12.

Proor. Let us observe first of all that, if 2 is an
arbitrary number of the system, and, if
n=14+1+4....4+1
is a positive integral rational number, then for » and
a the commutative law of multiplication always holds.
In fact, we have
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an=a(l+1+4....41)
=a'l4+al+4....4al
=a+ta+....4a,
and likewise

na=1+4+14....41)e
=la+1la+t....41-a
=a+a+....+a.

Suppose now, in contradiction to our hypothesis,
a, b to be numbers of this system, for which the com-
mutative law of multiplication does not hold. It is
then at once evident that we may make the assump-
tion that we have

a>0,6>0, ab—ba>0.

By virtue of condition 6 of § 13, there exists a number
¢(>0), such that

(a+8+1)c=ab—sa.

Finally, if we select a number &, satisfying simultane-
ously the inequalities

>0, d<1, d<q,

and denote by m and 7~ two such integral rational
numbers >0 that we have respectively

mdal(m+1)d
and

nd < b<(n+ 1)d,
then the existence of the numbers m and » is an im-
mediate consequence of the theorem of Archimedes
(theorem 17, § 13). Recalling now the remark made
at the beginning of this proof, we have by the multi-
plication of the last inequalities

ab <mnd*+ (m + n-+1)d*
ba > mnd?,
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and, hence, by subtraction
ab—ba<(m+n+1)d2
We have, however,
mdla, ndb, d<<l
and, consequently,
(m4+nt+Hd<a+b+1;
1 e.,
ab—bal(a+b6+1)d,
or, since d <¢, we have
ab—ba<(a+ b6+ 1)c.

This inequality stands in contradiction to the defini-
tion of the number ¢, and, hence, the vahdlty of the
theorem 38 follows.

§ 33. THE COMMUTATIVE LAW OF MULTIPLICATION
FOR A NON-ARCHIMEDEAN NUMBER SYSTEM.

THEOREM 39. For a non-archimedean number
system, the commutative law of multiplication
is not a necessary consequence of the remain-
ing laws of operation; that is to say, there ex-
ists a system of numbers possessing the prop-
erties 1-11, 13-16 mentioned in § 13, but for
which the commutative law (12) of multiplica-
tion is not valid. A desarguesian number sys-
tem, in the sense of § 28, is such a system.

Proor. Let ¢ be a parameter and 7" any expres-
sion containing a finite or infinite number of terms,
say of the form

T=ryp"+ rip*t - r o2 i3

where 7,(4=0), 7, 7,.... are arbitrary rational num-
bers and = is an arbitrary integral rational number
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>
<

expression having a finite or infinite number of terms,
say of the form

S=s"T,+ "N T+ 52T, + .. ..,

0. Moreover, let s be another parameter and .S any

where 7;,(40), 7;, 7,.... denote arbitrary expres-
sions of the form 7 and m is again an arbitrary integral
>

rational number =0. We will regard the totality of

all the expressio;s of the form .S as a complex num-
ber system Q (s, #), for which we will assume the fol-
lowing laws of operation; namely, we will operate
with s and ¢ according to the laws 7-11 of § 13, as
with parameters, while in place of rule 12 we will ap-
ply the formula

(1) s = 2st.

If, now, S’, S” are any two expressions of the form
y p
S, say
S =Ty +s"NT, + :r""+'-’T; N T
S"=s""T(+ s T/ s 2 T] 4 .. ..,

then, by combination, we can evidently form a new ex-
pression S’ 4 .S which is of the form .S, and is, more-
over, uniquely determined. This expression S’ + .S’
is called the sum of the numbers represented by .S’
and S".

By the multiplication of the two expressions S’ and
S” term by term, we obtain another expression of the
form

818" =5 T T 4 (57 Tysm"™ N T - s+ T, 5" T
(5™ Thys™ 2Ty 4 W T M T g2 T T ...

This expression, by the aid of formula (1), is evidently
a definite single-valued expression of the form .S and
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-we will call it the product of the numbers represented
by S’ and S”.

This method of calculation shows at once the valid-
ity of the laws 1-5 given in § 13 for calculating with
numbers. The validity of law 6 of that section is also
not difficult to establish. To this'end, let us assume
that

8! =™ T s T 7 T
and :
S =" Ty s s L

are two expressions of the form .S, and let us suppose,
further, that the coefficient »; of 77 is different from
zero. By equating the like powers of s in the two
members of the equation

2. Lz\ - S'S" :S"l,

we find, first of all, in a definite manner an integral
number 7" as exponent, and then such a succession
of expressions

Ty, T, T;....

that, by aid of formula (1), the expression
S =s""Ty+ s T s T, .. ..

satisfies equation (2). With this our theorem is estab-
lished.

In order, finally, to render possible an order of se-
quence of the numbers of our system Q (s, #), we make
the following conventions. Let a number of this sys-
tem be called greater or less than 0 according as in
the expression S, which represents it, the first coeffi-
cient 7, of 7, is greater or less than zero. Given any
two numbers ¢, & of the complex number system under
consideration, we say that @ <4 or @ >4 according as
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we have a—4 << 0 or > 0. It is seen immediately that,
with these conventions, the laws 13-16 of § 13 are
valid ; that is to say, Q (s, ?) is a desarguesian number
system (see § 28).

As equation (1) shows, law 12 of § 13 is not ful-
filled by our complex number system and, conse-
quently, the validity of theorem 39 is fully established.

In conformity with theorem 38, Archimedes’s the-
orem (theorem 17, § 13) does not hold for the number
system Q (s, ) which we have just constructed.

We wish also to call attention to the fact that the
number system Q(s, 7), as well as the systems Q and
Q(?) made use of in § 9 and § 12, respectively, con-
tains only an enumerable set of numbers.

§ 34. PROOF OF THE TWO PROPOSITIONS CONCERN-
ING PASCAL'S THEOREM. (NON-PASCALIAN
GEOMETRY.)

If, in a geometry of space, all of the axioms I, II,
IIT are fulfilled, then Desargues’s therem (theorem
32) is also valid, and, consequently, according to §§
24-26, pp. 79-89, it is possible to introduce into this
geometry an algebra of segments for which the rules
1-11, 13-16 of § 13 are all valid. If we assume now
that the axiom (V) of Archimedes is valid for our
geometry, then evidently Archimedes’s theorem (the-
orem 17 of § 13) also holds for our algebra of seg-
ments, and, consequently, by virtue of theorem 38,
the commutative law of multiplication is valid. Since,
however, the definition of the product of two seg-
ments, as introduced in § 24 (figure 42) and which is
the definition here also under discussion, agrees with
the definition in § 15 (figure 22), it follows from the
construction made in § 15 that the commutative law
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of multiplication is nothing else than Pascal’s theo-
rem. Consequently, the validity of theorem 36 is estab-
lished.

In order to demonstrate theorem 37, let us con-
sider again the desarguesian number system Q(s, ¢)
introduced in § 33, and construct, in the manner de-
scribed in § 29, a geometry of space for which all of
the axioms I, II, III are fulfilled. However, Pascal’s
theorem will not hold for this geometry ; for, the com-
mutative law of multiplication is not valid in the de-
sarguesian number system Q(s, /). According to theo-
rem 36, the non-pascalian geometry is then neces-
sarily a non-archimedean geometry.

By adopting the hypothesis we have, it is evident
that we cannot demonstrate Pascal’s theorem, pro-
viding we regard our geometry of space as a part of
a geometry of an arbitrary number of dimensions in
which, besides the points, straight lines, and planes,
still other linear elements are present, and providing
there exists for these elements a corresponding sys-
tem of axioms of connection and of order, as well as
the axiom of parallels.

§ 35, THE DEMONSTRATION, BY MEANS OF THE THE-
OREMS OF PASCAL AND DESARGUES, OF ANY
THEOREM RELATING TO POINTS
OF INTERSECTION.

Every proposition relating to points of intersection
in a plane has necessarily the following form: Select,
first of all, an arbitrary system of points and straight
lines satisfying respectively the condition that certain
ones of these points are situated on certain ones of
the straight lines. If, in some known manner, we
construct the straight lines joining the given points
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and determine the points of intersection of the given
lines, we shall obtain finally a definite system of three
straight lines, of which our proposition asserts that
they all pass through the same point. :

Suppose we now have a plane geometry in which
all of the axioms I 1-2, II...., V are valid. Accord-
ing to § 17, pp. 53-56, we may now find, by making
use of a rectangular pair of axes, for each point a cor-
responding pair of numbers(x, y) and for each straight
line a ratio of three definite numbers (#:v: w). Here,
the numbers x, y, », v, w are all rea/ numbers, of
which %, » cannot both be zero. The condition show-
ing that the given point is situated upon the given
straight line, viz.:

ux+oy+w=0

is an equation in the ordinary sense of the word. Con-
versely, in case x, y, #, v, w are numbers of the alge-
braic domain Q of § 9, and », » are not both zero, we
may certainly assume that each pair of numbers (x, y)
gives a point and that each ratio of three numbers
(#:v:w) gives a straight line in the geometry in ques-
tion.

If, for all the points and straight lines which occur
in connection with any theorem relating to intersec-
tions in a plane, we introduce the corresponding pairs
and triples of numbers, then such a theorem asserts
that a definite expression 4(2,, g, ..., #,) With real
coefficients and depending rationally upon certain
parameters p,, #,, ...., p, always vanishes as soon as
we put for each of these parameters a number of the
main O considered in § 9. We conclude from this
that the expression 4 (2, fo .. .., #,) must also van-
ish identically in accordance with the laws 7-12 of
§ 13.
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Since, according to § 32, Desargues’s theorem holds
for the geometry in question, it follows that we cer-
tainly can make use of the algebra of segments intro-
duced in § 24, and because Pascal’s theorem is equally
valid in this case, the commutative law of multiplica-
tion is also. Hence, for this algebra of segments, all
of the laws 7-12 of § 13 are valid.

If we take as our axes in this new algebra of seg-
ments the co-ordinate axes already used and consider
the unit points £, £’ as suitably established, we see
that the new algebra of segments is nothing else than
the system of co-ordinates previously employed.

In order to show that, for the new algebra of seg-
ments, the expression 4(p, f» ...., $,) vanishes
identically, it is sufficient to apply the theorems of
Pascal and Desargues. Consequently we see that:

Every proposition relative to potnis of intersection in
the geometry in question must always, by the aid of suit-
ably constructed auxiliary points and straight lines, turn
out to be a combination of the theorems of Pascal and
Desargues. Hence for the proof of the validity of a theo-
rem relating to points of intersection, we need not have
resource to the theorems of congruence.



GEOMETRICAL CONSTRUCTIONS
BASED UPON THE AXIOMS I-V.

§ 36. GEOMETRICAL CONSTRUCTIONS BY MEANS OF
A STRAIGHT-EDGE AND A TRANS-
FERER OF SEGMENTS.

UPPOSE we have given a geometry of space, in
which all of the axioms I-V are valid. For the
sake of simplicity, we shall consider in this chapter a
a plane geometry which is contained in this geometry
of space and shall investigate the question as to what
elementary geometrical constructions may be carried
out in such a geometry.

Upon the basis of the axioms of group I, the fol-
lowing constructions are always possible.

ProBLEM 1. To join two points with a straight
line and to find the intersection of two straight lines,
the lines not being parallel.

Axiom III renders possible the following construc-
tion:

ProeLEM 2. Through a given point to draw a par-
allel to a given straight line.

By the assistance of the axioms (IV) of congru-
ence, it is possible to lay off segments and angles;
that is to say, in the given geometry we may solve the
following problems:

ProeLeEM 3. To lay off from a given point upon a
given straight line a given segment.
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ProBLEM 4. To lay off on a given straight line a
given angle; or what is the same thing, to construct
a straight line which shall cut a given straight line at
a given angle. ’

It is impossible to make any new constructions by
the addition of the axioms of groups IT and V. Con-
sequently, when we take into consideration merely the
axioms of groups I-V, all of those constructions and
only those are possible, which may be reduced to the
problems 1-4 given above.

We will add to the fundamental problems 1-4 also
the following :

ProBLEM 5. To draw a perpendicular to a given
straight line.

We see at once that this construction can be made
in different ways by means of the problems 1-4.

In order to carry out the construction in problem
1, we need to make use of only a straight edge. An
instrument which enables us to make the construction
in problem 3, we will call a #ransferer of segments. We
shall now show that problems 2, 4, and 5 can be re-
duced to the constructions in problems 1 and 3 and,
consequently, all of the problems 1-5 can be com-
pletely constructed by means of a straight-edge and a
transferer of segments. We arrive, then, at the fol-
lowing result:

THEOREM 40. Those problems in geometrical
construction, which may be solved by the as-
sistance of only the axioms I-V, can always be
carried out by the use of the straight-edge and
the transferer of segments.

Proor. In order to reduce problem 2 to the solu-
tion of problems 1 and 3, we join the given point P
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with any point 4 of the given straight line and pro-
duce P4 to C, making 4C=2PA4. Then, join C with
any other point B of the
given straight line and
produce CB to Q, making
BQ=CAB. The straight
A 8 line PQ is the desired

parallel.
We can solve problem
5 in the following manner.
¢ Let Abean arbitrary point
Fig so. of the given straight line.
Then upon this straight line, lay off in both directions
from A4 the two equal segments 48 and 4AC. ~ Deter-
mine, upon any two straight lines passing through the
point 4, the points £ and D so that the segments
AD and AFE will equal 4B and 4AC. Suppose the

P Q

F

d

B A Cc
Fig. s1.

straight lines BD and CE intersect in # and the
straight lines BE and CD intersect in H. FH is
then the desired perpendicular. In fact, the angles
BDC and BEC, being inscribed in a semicircle having
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the ‘diameter BC, are both right angles, and, hence,
according to the theorem relating to the point of in-
tersection of the altitudes of a triangle, the straight
lines #H and BC are perpendicular to each other.
Moreover, we can easily solve problem 4 simply by
the drawing of straight lines and the laying off of seg-
ments. We will employ the following method which
requires only the drawing of parallel lines and the
erection of perpendiculars. Let B8 be the angle to be
laid off and 4 its vertex. Draw through A4 a straight
line / parallel to the given straight line, upon which

A c |
Fig. 52.

we are to lay off the given angle 8. From an arbi-
trary point B of one side of the angle B, let fall a per-
pendicular upon the other side of this angle and also
one upon /. Denote the feet of these perpendiculars
by D and C respectively. The construction of these
perpendiculars is accomplished by means of problems
2 and 5. Then, let fall from 4 a perpendicular upon
CD, and let its foot be denoted by £Z. According to
the demonstration given in § 14, the angle C4 £ equals
B. Consequently, the construction in 4 is made to
depend upon that of 1 and 3 and with this our propo-
sition is demonstrated.
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§ 372 ANALYTICAL REPRESENTATION OF THE CO-
ORDINATES OF POINTS WHICH CAN
BE SO CONSTRUCTED.

Besides the elementary geometrical problems con-
sidered in § 36, there exists a long series of other
problems whose solution is possible by the drawing
of straight lines and the laying off of segments. In
order to get a general survey of the scope of the prob-
lems which may be solved in this manner, let us take
as the basis of our consideration a system of axes in
rectangular co-ordinates and suppose that the co-or-
dinates of the points are, as usual, represented by real
numbers or by functions of certain arbitrary param-
eters. In order to answer the question in respect to
all the points capable of such a construction, we em-
ploy the following considerations.

Let a system of definite points be given. Combine
the co-ordinates of these points into a domain &.
This domain contains, then, certain real numbers and
certain arbitrary parameters p. Consider, now, the
totality of points capable of construction by the draw-
ing of straight lines and the laying off of definite seg-
ments, making use of the system of points in question.
We will call the domain formed from the co-ordinates
of these points Q(X), which will then contain real
numbers and functions of the arbitrary parameters p.

The discussion in § 17 shows that the drawing of
straight lines and of parallels amounts, analytically,
to the addition, subtraction, multiplication, and divi-
sion of segments. Furthermore, the well known for-
mula given in § 9 for a rotation shows that the laying
off of segments upon a straight line does not necessi-
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tate any other analytical operation than the extraction
of the square root of the sum of the squares of two
segments whose bases have been previously con-
structed. Conversely, in consequence of the pytha-
gorean theorem, we can always construct, by the aid
of a right triangle, the square root of the sum of the
squares of two segments by the mere laying off of
segments.

From these considerations, it follows that the do-
main Q(R) contains all of those and only those real
numbers and functions of the parameters g, which arise
from the numbers and parameters in R by means of a
finite number of applications of the five operations;
viz., the four elementary operations of arithmetic and,
in addition, the fifth operation of extracting the square
root of the sum of two squares. We may express this
result as follows:

THEOREM 41. A problem in geometrical construc-
tion is, then, possible of solution by the drawing
of straight lines and the laying off of segments,
that is to say, by the use of the straight-edge
and a transferer of segments, when and only
when, by the analytical solution of the prob-
lem, the co-ordinates of the desired points are
such functions of the co-ordinates of the given
points as, may be determined by the rational
operations and, in addition, the extraction of
the square root of the sum of two squares.

Frcm this proposition, we can at once show that
not every problem which can be solved by the use of
a compass can also be solved by the aid of a trans-
ferer of segments and a straight-edge. For the pur-
pose of showing this, let us consider again that geom-
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etry which was constructed in § 9 by the help of the
domain @ of algebraic numbers. In this geometry,
there exist only such segments as can be constructed
by means of a straight-edge and a transferer of seg-
ments, namely, the segments determined by the num-
bers of the domain Q.

Now, if w is a number of the domain Q, we easily
see from the definition of Q that every algebraic num-
ber conjugate to » must also lie in Q. Since the num-
bers of the domain Q are evidently all real, it follows
that it can contain only such real algebraic numbers
as have their conjugates also real.

Let us now consider the following problem; viz.,
to .construct a right triangle having the hypotenuse
1 and one side II/—Z— | —1. The algebraic number

1/ 2|V 2|2, which expresses the numerical value of
the other side, does not occur in the domain ©, since
the conjugate number ]/——2[1/'-§|—2 is imaginary.
This problem is, therefore, not capable of solution in
the geometry in question and, hence, cannot be con-
structed by means of a straight-edge and a transferer
of segments, although the solution by means of a com-
pass is possible.

§ 38. THE REPRESENTATION OF ALGEBRAIC NUM-
BERS AND OF INTEGRAL RATIQNAL FUNC-
TIONS AS SUMS OF SQUARES.

The question of the possibility of geometrical con-
structions by the aid of a straight-edge and a transferer
of segments necessitates, for its complete treatment,
particular theorems of an arithmetical and algebraic
character, which, it appears to me, are themselves of
interest.
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Since the time of Fermat, it has been known that
every positive integral rational number can be repre-
sented as the sum of four squares. This theorem of
Fermat permits the following remarkable generaliza-
tion:

DeriNITION. Let £ be an arbitrary number field
and let m be its degree. We will denote by #, 2",
ve..y AV the m—1 number fields conjugate to 4.
If, among the m fields &, #, 2, ...., 2", there is
one or more formed entirely of real numbers, then we
call these fields real. Suppose that the fields £, #,
<. .., A% are such. A number a of the field 2 is called
in this case Zotally positive in k, whenever the s num-
bers conjugate to a, contained respectively in %, Z,
'y ..., D, are all positive. However, if in each
of the m fields %, #, %', ...., AV there are also im-
aginary numbers present, we call every number a in
& tolally positive.

We have, then, the following proposition :

THEOREM 42. Every totally positive number in £
may be represented as the sum of four squares,
whose bases are integral or fractional numbers
of the field 4.

The demonstration of this theorem presents seri-
ous difficulty. It depends essentially upon the theory
of relatively quadratic number fields, which I have
recently developed in several papers.* We will here
call attention only to that proposition in this theory
* which gives the condition that a ternary diophantine
equation of the form

#¢Ueber die Theorie der relativquadratischen Zahlkdrper,’ Jahresbe-
rickt der Deutschen Math. Vereinigung, Vol. 6, 1899, and Matk. Annalexn, Vol.
s1. See, also, ‘ Ueber die Theorie der relativ-Abelschen Zahlkérper,’’ Nackr,
der K, Ges. der Wiss, su Gittingen, 1898,
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o + B+ y&'=0

can be solved when the coefficients a, 8, y are given
numbers in £ and £, %, { are the required numbers in
4. The demonstration of theorem 42 is accomplished
by the repeated application of the proposition just
mentioned.

From theorem 42 follow a series of - propositions
concerning the representation of such rational func-
tions of a variable, with rational coefficients, as never
have negative values. I will mention only the follow-
ing theorem, which will be of service in the following
sections.

TaeorEM 43. Let f(x) be an integral rational func-
tion of x whose coefficients are rational num-
bers and which never becomes negative for any
real value of x. Then f(x) can always be rep-
resented as the quotient of two sums of squares
of which the bases are all integral rational func-
tions of x with rational coefficients.

Proor. We will denote the degree of the function
J(x) by m, which, in any case, must evidently be even.
When m =0, that is to say, when f(x) is a rational
number, the validity of theorem 43 follows imme-
diately from Fermat’s theorem concerning the repre-
sentation of a positive number as the sum of four
squares. We will assume that the proposition is al-
ready established for functions of degree 2, 4, 6,....,
m— 2, and show, in the following manner, its validity
for the case of a function of the m* degree.

Let us, first of all, consider briefly the case where
f(x) breaks up into the product of two or more in-
tegral functions of x with rational coefficients. Sup-
pose p(x) to be one of those functions contained in
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Sf(x), which itself cannot be further decomposed into
a product of integral functions having rational co-
efficients. It then follows at once from the ¢‘definite”
character which we have given to the function f(x),
that the factor p(x) must either appear in f(x) to an
even degree or p(x) must be itself ‘‘definite”; that
is to say, must be such a function as never has nega-
tive values for any real values of x. In the first case,

the quotient J((—:))}zand, in the second case, both p(x)
and;;((% are ‘‘definite,” and these functions have an

even degree <<m. Hence, according to our hypoth-
S(x)
{p(x)}*

may be represented as the quotient of the

esis, in the first case,
S(=x)
and 22—
2(x)

sum of squares of the character mentioned in theorem
43. Consequently, in both of these cases, the func-
tion f(x) admits of the required representation.

Let us now consider the case where f(x) cannot
be broken up into the product of two integral functions
having rational coefficients. The equation /(8)=0 de-
fines, then, a field of algebraic numbers £(6) of the
m™ degree, which, together with all their conjugate
fields, are imaginary. Since, according to the defini-
tion given just before the statement of theorem 42,
each number given in %(6), and hence also —1 is to-
tally positive in £(0), it follows from theorem 42 that
the number —1 can be represented as a sum of the
squares of four definite numbers in 4(f). Let, for ex-
ample

@ —l=a+f 7+,

and, in the last case, p(x)

where o, 8, y, 8 are integral or fractional numbers in
4(6). Let us put
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a=a 0+ 0+ ...+ 2= (),
B=566""" 456"+ ....+ b =y(0),
y=60""14 .02 +....+ ¢, = x(6),
0=d0'+dp"*+....+4d,=p(0);

where a,, @, ...., @y ...., &, &5, ...., d, are the
rational numerical coefficients and ¢(6), ¢(0), x(6),
p(0) the integral rational functions in question, hav-
ing the degree (m—1) in 6.

From (1), we have

1+ {(0)*+ {¥(6)i* + {x(0)}*+ {p(6)}*=0.
Because of the irreducibility of the equation f(x)=0,
the expression

F(x)=1+ {$(H}"+ (@) }*+ {x()}*+ {p(x)}*
represents, necessarily, such an integral rational func-
tion of x as is divisible by f(x). ZF(x) is, then, a
¢¢definite’”’ function of the degree (2m—2) or lower.

. F(x). . .
Hence, the quotient —>-Zis a ‘‘definite” function of
SRPRRC

the degree (m—2) or lower in x, having rational co-

efficients. Consequently, by the hypothesis we have
made, £(x) can be represented as the quotient of two

f(#) ‘

sums of squares of the kind mentioned in theorem 43
and, since F(x) is itself such a sum of squares, it fol-
lows that f(x) must also be a quotient of two sums of
squares of the required kind. The validity of theo-
rem 43 is accordingly established.

It would be perhaps difficult to for.nulate and to
demonstrate the corresponding proposition for integral
functions of two or more variables. However, I will
here merely remark that I have demonstrated in an
entirely different manner the possibility of represent-
ing any ‘‘definite” integral rational function of two
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variables as the quotient of sums of squares of in-
tegral functions, upon the hypothesis that the func-
tions represented may have as coefficients not only
rational but ezy real numbers.*

§39. CRITERION FOR THE POSSIBILITY OF A GEO-
METRICAL CONSTRUCTION BY MEANS OF A
STRAIGHT-EDGE AND A TRANSFERER
OF SEGMENTS.

Suppose we have given a problem in geometrical
construction which can be affected by means of a com-
pass. We shall attempt to find a criterion which will
enable us to decide, from the analytical nature of the
problem and its solutions, whether or not the construc-
tion can be carried out by means of only a straight-
edge and a transferer of segments. Our investigation
will lead us to the following proposition.

THEOREM 44. Suppose we have given a problem
in geometrical construction, which is of such a
character that the analytical treatment of it
enables us to determine uniquely the co-ordi-
nates of the desired points from the co-ordinates
of the given points by means of the rational
operations and the extraction of the square root. -
Let #» be the smallest number of square roots
which suffice to calculate the co-ordinates of
the points. Then, in order that the required
construction shall be possible by the drawing
of straight lines and the laying off of segments,
it is necessary and sufficient that the given geo-
metrical problem shall have exactly 2* real so-
lutions for every position of the given points;
that is to say, for all values of the arbitrary

*See “ Ueber ternire definite Formen,'' Acta mathematica, Vol. 17.
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parameter expressed in terms of the co-ordi-
nates of the given points.

Proor. We shall demonstrate this proposition
merely for the case where the co-ordinates of the
given points are rational functions, having rational
coefficients, of a single parameter p.

It is at once evident that the proposition gives a
necessary condition. In order to show that it is also
sufficient, let us assume that it is fulfilled and then,
among the # square roots, consider that one which,
in the calculation of the co-ordinates of the desired
points, is first to be extracted. The expression under
this radical is a rational function £(), having rational
coefficients, of the parameter p. This rational func-
tion cannot have a negative value for any real value
of the parameter p; for, otherwise the problem must
have imaginary solutions for certain values of g, which
is contrary to the given hypothesis. Hence, from
theorem 43, we conclude that f{(#) can be represented
as a quotient of the sums of squares of integral ra-
tional functions.

Moreover, the formulae

Vet et e=1V (Va+8)+a
VETFTaT A=V (Vat et + 4,

. . . . . . . . . . . . . . . .

show that, in general, the extraction of the square root
of a sum of any number of squares may always be re-
duced to the repeated extraction of the square root of
the sum of two squares.

If now we combine this conclusion with the pre-
ceding results, it follows that the expression V' /(2)
can certainly be constructed by means of a straight-
edge and a transferer of segments.
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Among the 7 square roots, consider now the sec-
ond one to be extracted in the process of calculating
the co-ordinates of the required points. The expres-
sion under this radical is a rational function £(2, V' £)
of the parameter p and the square root first considered.
This function f; can never be negative for any real
arbitrary value of the parameter g and for either sign
of V/f;; for, otherwise among the 2* solutions of our
problem, there would exist for certain values of p also
imaginary solutions, which is contrary to our hypoth-
esis. It follows, therefore, that /, must satisfy a quad-
ratic equation of the form

L—e(D)sa+ nW()= 0,

where ¢,(#) and y,(p) are, necessarily, such rational
" functions of p as have rational coefficients and for real
values of p never become negative. From this equa-
tion, we have

_Btwe)
=

Now, according to theorem 43, the functions ¢,() and
¥,(#) must again be the quotient of the sums of squares
of rational functions, and, on the other hand, the ex-
pression f; may be, from the above considerations,
constructed by means of a straight-edge and a trans-
ferer of segments. The expression found for £, shows,
therefore, that £, is a quotient of the sum of squares
of functions which may be constructed in the same
way. Hence, the expression Vf, can also be con-
structed by means of a straight-edge and a transferer
of segments.

Just as with the expression f;,, and other rational
function ¢,(, V'£) of p and V'f, may be shown to be
the quotient of two sums of squares of functions which
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may be constructed, providing, this rational function
¢, possesses the property that, for real values of the
parameter p and for either sign of V/f, it never be-
comes negative.

This remark permits us to extend the above method
of reasoning in the following manner.

Let £(2, V' /i, V'f;) be such an expression as de-
pends in a rational manner upon the three arguments
2, V'fs V'f, and of which, in the analytical calculation
of the co-ordinates of the desired points, the square
root is to be extrated a third time. As before, it fol-
lows that f; can never have negative values for real
values of p and for either sign of V£ and V/f,. This
condition of affairs shows again that £, must satisfy a
quadratic equation of the form

L= VIV + (5 V=0,
where ¢, and y, are such rational functions of p and
V'/, as never become negative for any real value of g
and either sign of 1V'/,. But, according to the preced-
ing remark, the functions ¢, and y, are the quotients
of two sums of squares of functions which may be con-
structed and, hence, it follows that the expression
f_f:?+~lf».»(/’, VA
= —

$(2 V)
is likewise possible of construction by aid of a straight-
edge and a transferer of segments.

The continuation of this method of reasoning leads
to the demonstration of theorem 44 for the case of a
single parameter p.

The truth of theorem 44 for the general case de-
pends upon whether or not theorem 43 can be gen-
eralized in a similar manner to cover the case of two
or more variables.
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As an example of the application of theorem 44,
we may consider the regular polygons which may be
constructed by means of a compass. In this case, the
arbitrary parameter p does not occur, and the expres-
sions to be constructed all represent algebraic num-
bers. We easily see that the criterion of theorem 44 .
is fulfilled, and, consequently, it follows that ever;n- e
regular polygonscan be constructed by the drawing of
straight lines and the laying off of segments. We
might deduce this result also directly from the theory
of the division of the circle (K7reisteilung).

Concerning the other known problems of construc-
tion in the elementary geometry, we will here only
mention that the problem of Malfatti may be con-
structed by means of a straight-edge and a transferer
of segments. This is, however, not the case with the
contact problems of Appolonius.



CONCLUSION.

HE preceding work treats essentially of the prob-
lems of the euclidean geometry only; that is to
say, it is a discussion of the questions which present
themselves when we admit the validity of the axiom
. of parallels. It is none the less important to discuss
the principles and the fundamental theorems when we
disregard the axiom of parallels. We have thus ex-
cluded from our study the important question as to
whether it is possible to construct a geometry in a
logical manner, without introducing the notion of the
plane and the straight line, by means of only points
as elements, making use of the idea of groups of trans-
formations, or employing the idea of distance. This’
last question has recently been the subject of consider-
able study, due to the fundamental and prolific works
of Sophus Lie. However, for the complete elucida-
tion of this question, it would be well to divide into
several parts the axiom of Lie, that space is a numer-
ical multiplicity. First of all, it would seem to me
desirable to discuss thoroughly the hypothesis of Lie,
that functions which produce transformations are not
only continuous, but may also be differentiated. As
to myself, it does not seem to me probable that the
geometrical axioms included in the condition for the
possibility of differentiation are all necessary.
In the treatment of all questions of this character,
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I believe the methods and the principles employed in
the preceding work will be of value. As an example,
let me call attention to an investigation undertaken at
my suggestion by Mr. Dehn, and which has already
appeared.* In this article, he has discussed the known
theorems of Legendre concerning the sum of the an-
gles of a triangle, in the demonstration of which that
geometer made use of the idea of continuity.

The investigation of Mr. Dehn rests upon the ax-
ioms of connection, of order, and of congruence; that
is to say, upon the axioms of groups I, II, IV. How-
ever, the axiom of parallels and the axiom of Archi-
medes are excluded. Moreover, the axioms of order
are stated in a more general manner than in the pres-
ent work, and in substance as follows: Among four
points 4, B, C, D of a straight line, there are always
two, for example 4, C, which are separated from the
other two and conversely. Five points 4, B, C, D,
£ upon a straight line may always be so arranged that
A, C shall be separated from B, £ and {rom B, D.
Consequently, 4, D are always keparated from B, £
and from C, E, etc. The (elliptic) geometry of Rie-
mann, which we have not considered in the present
work, is in this way not necessarily excluded.

Upon the basis of the axioms of connection, order,
and congruence, that is to say, the axioms I, II, IV,
we may introduce, in the well known manner, the ele-
ments called ideal,—ideal points, ideal straight lines,
and ideal planes. Having done this, Mr. Dehn dem-
onstrates the following theorem.

If, with the exception of the straight line # and
the points lying upon it, we regard all of the

* Matk., Annalen, Vol. 53 (1900).
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straight lines and all of the points (ideal or
real) of a plane as the elements of a new geom-
etry, we may then define a new kind of congru-
ence so that all of the axioms of connection,
order, and congruence, as well as the axiom of
Euclid, shall be fulfilled. In this new geom-
etry, the straight line 7 takes the place of the
straight line at infinity.

This euclidean geometry, confined thus to a non-
euclidean plane, may be called a psewdo-geometry and
the new kind of congruence a gseude-congruence.

By aid of the preceding theorem, we may now in-
troduce an algebra of segments relating to the plane
and depending upon the developments made in § 15,
pp- 46-50. This algebra of segments permits the
demonstration of the following important theorem :

If, in any triangle whatever, the sum of the an-
gles is greater than, equal to, or less than, two
right angles, then the same is true for all tri-
angles.

The case where the sum of the angles is equal to
two right angles gives the well known theorem of
Legendre. However, in his demonstration, Legendre
makes use of continuity. '

Mr. Dehn then discusses the connection between
the three different hypotheses relative to the sum of
the angles and the three hypotheses relative to par-
allels.

He arrives in this manner at the following remark-
able propositions.

Upon the hypothesis that through a given point
we may draw an infinity of lines parallel to a
given straight line, it does not follow, when we
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exclude the axiom of Archimedes, that the sum
of the angles of a triangle is less than two right
angles, but on the contrary, this sum may be

(a) greater than two right angles, or
% equal to two right angles.

In order to demonstrate part (2) of this theorem,
Mr. Dehn constructs a geometry where we may draw
through a point an infinity of lines parallel to a given
straight line and where, moreover, all of the theorems
of Riemann’s (elliptic) geometry are valid. This geom-
etry may be called non-legendrian, for it is in contra-
diction with that- theorem of Legendre by virtue of
which the sum of the angles a triangle is never greater
than two right angles. From the existence of this
non-legendrian geometry, it follows at once that it is
impossible to demonstrate the theorem of Legendre
just mentioned without employing the axiom of Ar-
chimedes, and, in fact, Legendre made use also of
continuity in his demonstration of this theorem.

For the demonstration of case (4), Mr. Dehn con-
structs a geometry where the axiom of parallels does
not hold, but where, nevertheless, all of the theorems
of the euclidean geometry are valid. Then, we have
the sum of the angles of a triangle equal to two right
angles. There exist also similar triangles, and the ex-
tremities of the perpendiculars having the same length
and their bases upon a straight line all lie upon the

same straight line, etc. The existence of this geom-
" etry shows that, if we disregard the axiom of Archi-
medes, the axiom of parallels cannot be replaced by
any of the propositions which we usually regard as
equivalent to it.

This new geometry may be called a semi-cuclidean
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geomelry. As in the case of the non-legendrian geom-
etry, it is clear that the semi-euclidean geometry is at
the same time a non-archimedean geometry.

Mr. Dehn finally arrives at the following surpris-
ing theorem:

Upon the hypothesis that there exists no parallel,
it follows that the sum of the angles of a tri-
angle is greater than two right angles.

This theorem shows that the two non-euclidean
hypotheses concerning parallels lead to very different
results from those of the axiom of Archimedes.

We may combine the preceding results in the fol-
lowing table.

THROUGH A GIVEN POINT, WE MAY DRAW
THE SUM OF

THE ANGLES
o e TRIAN- NO PARALLELS | ONEFARALLEL | AN INFINITY OF PARALLELS
STRAIGHT LINE | STRAIGHT LINE TO A STRAIGHT LINE
> aright Riemann’s This case im-
(elliptic) ge- i Non-legendrian g try
angles ometry possible
< z2right This case im- Euclidnn'
ibl (parabolic) | Semi-euclidean geometry
angles possible geometry
= 2right This case im- | This case im- | G try of Lob h ki
angles possible possible (byperbolic)

However, as I have already remarked, the present
work is rather a critical investigation of the principles
of the euclidean geometry. . In this investigation, we
have taken as a guide the following fundamental prin-
ciple; viz., to make the discussion of each question
of such a character as to examine at the same time



CONCLUSION. : 131

whether or not it is possible to answer this question
by following out a previously determined method and
by employing certain limited means. This fundamen-
tal rule seems to me to contain a general law and to
conform to the nature of things. In fact, whenever
in our mathematical investigations we encounter a
problem or suspect the existence of a theorem, our
reason is satisfied only when we possess a complete
solution of the problem or a rigorous demonstration of
the theorem, or, indeed, when we see clearly the rea-
son of the impossibility of the success and, conse-
quently, the necessity of failure.

Thus, in the modern mathematics, the question of
the impossibility of solution of certain problems plays
an important role, and the attempts made to answer
such questions have often been the occasion of dis-
covering new and fruitful fields for research. We re-
call in this connection the demonstration by Abel of
the impossibility of solving an equation of the fifth
degree by means of radicals, as also the discovery of
the impossibility of demonstrating the axiom of par-
allels, and, finally, the theorems of Hermite and Lin-
deman concerning the impossibility of constructing
by algebraic means the numbers ¢ and =.

This fundamental principle, by virtue of which we
are everywhere able to discuss the principles under-
lying the impossibility of demonstrations, is intimately

- connected with the condition for the ¢‘purity” of
methods in demonstration, which in recent times has
been considered of the highest importance by ngany
mathematicians. The foundation of this condition is
nothing else than a subjective conception of the fun-
damental principle given above. In fact, the preced-
ing geometrical study attempts, in general, to explain
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what are the axioms, hypotheses, or means, necessairy
to the demonstration of a truth of elementary geom-
etry, and it only remains now for us to judge from the
point of view in which we place ourselves as to what
are the methods of demonstration which we should
prefer.
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PRESS COMMENTS ON THE FIRST ENGLISH EDITION.

¢ The appearance of a translation into English of this remarkable book
should serve to revivify in this country [England] the somewhat stagnating
tr t of its subject, and should call up the thoughts which puzzle us
when we think of them, and that is not sufficiently often. . . . Professor Mach

is a striking instance of the combination of great mathematical knowledge
with experimental skill, as exemplified not only by the elegant illustrations
of mechanical principles which abound in this treatise, but also from his
bri[liﬁnt experiments on the photography of bullets. ... A careful study of
Professor Mach's work, and a treatment with more experimental illustration,
on the lines laid down in the interesting diagrams of his Science of Mechanics,

will do much to revivify theoretical hanical sci , as developed from
the elements by rigorous logical treatment.””—Prof. A, G. Greenhill, in Na
ture, London.

*“*Those who are curious to learn how the principles of hanics have
been evolved, from what source they take their origin, and how far they can
be deemed of positive and permanent value, will find Dr. Mach’s able trea-
tise entrancingly interesting. ... The book is a remarkable one in many re-
spects, while the mixture of history with the latest scientific principles and
absolute mathematical deductions makes it exceedingly attractive."—Me

hanical World, Manchester and London, England.

‘“Mach's Meckanics is unique. Itis not a text-book, but forms a useful
supplement to the ordinary text-book. The latter is usually a skeleton out-
line, full of mathematical symbols and other abstractions. Mach's book has
‘muscle and clothing,’ and being written from the historical standpoint, in-
troduces the leading contributors in succession, tells what they did and how
they did it, and often what manner of men they were. Thus it is that the
pages glow, as it were, with a certain humanism, quite delightful in a scien-

tific book. ... The book is handsomely printed, and deserves a warm recep-

tion from all interested in the progress of sci "—The Physical Review,
New York and London.

“Mr. T. J. McCormack, by his effective translation, where translaﬁqn
was no light task, of this masterly treatise upon the earliest and most funda

tal of the sci , has rendered no slight service to the English-speak
ing student. The German and English langunages are generally accounted
second to none in their value as instruments for the expression of sciontific
thought; but the conversion bodily of an abstruse work from one into the
other, so0 as to preserve all the meaning and spirit of the original and to set it
easily and naturally into its new form, is a task of the greatest difficulty, and
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when performed so well as in the present instance, merits great commenda-
tion. Dr.Mach has created for his own works the severest possible standard
of judgment. To expect no more from the books of such a master than from
the elementary productions of an ordinary teacher in the science would be
undue moderation. Our author has lifted what, to many of us, was at one
time a oourse of seemingly unprofitable 1 gy ti P d
only at vast expenditure of intellectual effort, into a study possessing a deep
philosophical value and instinct with life and interest. ‘No profit grows
where is no pleasure ta'en,’ and the emancipated collegian will turn with
pleasure from the narrow methods of the text-book to where the science is

made to illustrate, by a treatment at once broad and deep, the fundamental
connexion between all the physical sciences, taken together.”—7ke Mining
Journal, London, England.

¢ As a history of mechanics, the work is admirable,'’—7he Nation, New
York. .

‘‘An excellent book, admirably illustrated.”’—7ke Literary World, Lon-
don, England. .

*“Sets forth the elements of its subject with a lucidity, clearness, and
force unknown in the mathematical text-books...is admirably fitted to
serve students as an introduction on historical lines to the principles of me-

hanical sci "—Canadian Mining and Mechanical Review, Ottawa, Can.

“A masterly book. . .. To any one who feels that he does not know as
much as he ought to about physics, we can commend it most heartily as.a
scholarly and able treatise. ... both interesting and profitable.”’—A, M.
Wellington, in Engineering News, New York.

““The book as a whole is unique, and is a valuable addition to any library
of science or philosophy. ... Reproductions of quaint old portraits and
vignettes give piquancy to the pages. The numerous marginal titles form a
complete epitome of the work ; and there is that invaluable adjunct, a good
index. Altogether the publishers are to be congratulated upon producing a
technical work that is théroughly attractive in its make-up.’’—Prof. D. W,
Hering, in Science.

“There is one other point upon which this volume should be commended,
and that is the perfection of the translation. Itis a common fault that books
of the greatest Interest and value in the original are oftenest butchered or
made ridiculous by a clumsy translator. The present is a noteworthy excep-
tion.""—Railway Age. '
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*The book is admirably printed and bound. ... The presswork is un-
excelled by any technical books that have come to our hands for some time
and the engravings and figures are all clearly and well executed.''—Raislroad
Gasette,

TESTIMONIALS OF PROMINENT EDUCATORS.

“] am delighted with Professor Mach's Sciesce of Mechanics.—M, E
Cooley, Prof. of Mechanical Engineering, Ann Arbor, Mich.

*You have done a'grea( service to science in publishing Mach’s Sciemce
of Mechanics in English. I shall take every opportunity to recommend it to
young students as a source of much interesting information and inspiration.’
—M. 1. Pupin, Prof of Mechanics, Columbia College, New York.

¢‘Mach's Sciemce of Mechamics is an admirable . ... book.”—FPref. E, A
Fuertes, Director of the College of Civil Engineering of Cornell University
Ithaca, N. Y.

“] congratulate you upon producing the work in such good style and in
so good a translation. I bought a copy of it a year ago, very shortly after you
issued it. The book itself is deserving of the highest admiration; and you
are entitled to the thanks of all English-speaking physicists for the publica-
tion of this translation.”"—D, W, f(crx’n{; Professor of Physics, University of
the City of New York, New York,

“I have read Mach's Sciesce of Mechanics with great pleasure. The book
is exceedingly interesting."’—W. F. Magie, Professor of Physics, Princeton
University, Princeton, N. J.

¢ The Sciemce of Mechanics by Mach, translated by T. J. McCormack, I
regard as a most valuable work, not only for acquainting the student with the

history of the develop of Mechanics, but as serving to present to him
most favorably the fund 1ideas of Mechanics and their rational con-
with the highest h tical develop ts. It is a most profitable
book to read along with the study of a text-book of Mechanics, and I shall take
pleasure in recommending its perusal by my stud *—S. W. Robss , Pro
fessor of Mechanical Engineering, Ohio State University, Columbas, Ohio.

“1 am delighted with Mach's * Mechanics.” I will call the attention to
it of students and instructors who have the Mechanics or Physics to study or
teach.”’— /. E. Davies, University of Wisconsin, Madison, Wis.

*There can be but one opinion as to the value of Mach’s work in this
translation. No instructor in physics should be without a copy of it.""—ZXenry
Crew, Professor of Physics in the Northwestern University, Evanston, Ill.
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PRESS NOTICES.

“ A most fascinating volume, treating of phenomena in which all are in-
terested, in a delightful style and with wonderful clearness. For lightness
of touch and yet solid value of information the chapter * Why Has Man Two
Eyes?’ has scarcely a rival in the whole realm of popular scientific writing.”
—The Boston Traveller,

*Truly remarkable in the insight they give into the relationship of the
various fields cultivated under the name of Physics. ... A vein of humoris
met here and there reminding the reader of Heaviside, never offending one's
taste, These features, together with the lightness of touch with which Mr
McCormack has rendered them, make the volume one that may be fairly
called rare. The spirit of the author is preseived in such attractive, really
delightful, English that one is assured nothing has been lost by translation.’
—Prof. Henry Crew, in The Astrophysical Journal,
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‘A very delightful and useful book. ... Should find a place in every
library.""—Daisly Picayune, New Orleans.

*In his translation Mr. McCormack has well preserved the frank, simple.
and pleasing style of this famous lecturer on séientific topics. Professor Mach
deals with the live facts, the salient points of science, and not with its mysti-
cism or dead traditions. He uses the simplest of illustrations and expresses
himself clearly, tersely, and with a delightful freshness that makes entertain-
ing reading of what in other hands would be dull and prosy.”’—ZEngineering
News, N. Y.

*The general reader is led by plain and easy steps along a delightful way
through what would be to him without such a help a complicated maze of
difficulties. Marvels are invented and science is revealed as the nataral foe
to mysteries."”— 7ke Chautauguan.

‘“ The beautiful quality of the work is not marred by abstruse discussions
which would require a scientist to fathom, but is so simple and so clear that
it brings us into direct contact with the matter treated.'’—7%e Boston Post.

“A ma'sterly exposition of important sciomiﬁ.c truths,”’—Sco¢sman, Edin
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“ The most beautiful ideas are unfolded in the exposition."—Cafholic
World, New York.



THE WORKS OF ERNST MACH.

THE ANALYSIS OF THE SENSATIONS

By DR. ERNST MACH,

PROFESSOR OF THE HISTORY AND THEORY OF INDUCTIVE SCIENCE IN THE
UNIVERSITY OF VIENNA.

Pages, 208. Illustrations, 37. Indexed.

Price, Cloth, $1.25 net (6s. 6d.).

CONTENTS.

Introductory : Antimetaphysical.—The Chief Points of View for the In-
vestigation of the Senses.—The Space-Sensations of the Eye.—Space-Sensa
tion, Continued.—The Relations of the Sight-Se i to One Another and
to the Other Psychical El ts.—The S ion of Time.—The Sensation
of Sound.—Influence of the Preceding Investigations on the Mode of Con
celving Physics.

“A wonderfully original little book. Like everything he writes a work of
genius.”—Prof. W, James of Harvard.

“] consider each work of Professor Mach a distinct acquisition to a
library of science.”—Frof. D, W, Hering, New York University.

“There is no work known to the writer which, in its general scientific
bearings, is more likely to repay richly thorough study. We are all interested
in nature in one way or another, and our interests can only be heightened
and clarified by Mach’s wonderfully original and wholesome book. It is not
saying too much to maintain that every intelligent person should have a copy
of it,—and should study that copy.’'—Frof. J. B. Trevor, Cornell.

‘‘Students may here make the acquaintance of some of the open ques-
tions of sensation and at the same time take a lesson in the charm of scien-
tific modesty that can hardly be excelled.”’—Prof. E. C. Sanford, Clark Uni-
versity.

“ It exhibits keen observation and acute thought, with many new and in-
teresting experiments by way of illustration. Moreover, the style is light
and even lively—a rare merit in a German prose work, and still rarer ina
translation of one,"’—7Ae Lsterary World, London.

The Open Court Publishing Company

s24 DEARBORN STREET, CHICAGO, ILL.
LONDON: KEGAN PAUL, TRENCH, TRUBNER & CO., Limited.

Paternoster House, Charing Cross Road.



Catalogue of Publications

Open Court Publishing Company

Chicago, Monon Building, 324 Dearborn St.

London, Kegan Panul, Trench, Tribner & Co.,

SUNDARA ROW, T.
GEOMETRICAL EXERCISES IN PAPER-FOLDING.
With Half-Tones from Photographs of Exercises. Pages, x + 148
Cloth, $1.00 net (4s. 6d. net).

COPE, E. D.
THE PRIMARY FACTORS OF ORGANIC EVOLUTION.
121 cuts. Pp. xvi, 547. Cloth, $2.00 net (108.).

MULLER, F. MAX.
THREET INTI(I;%I')IUCTORY LECTURES ON THE SCIENCE OF

128 pages. Cloth, 75¢ (3s. 6d.).

THREE LECTURES ON THE SCIENCE OF LANGUAGE.
112 pages. 2nd Edition. Cloth, 75¢ (3s. 6d.).

ROMANES, GEORGE JOHN.
DARWIN AND AFTER DARWIN.
Three Vols., $4.00. Singly, as follows:
1. THE DARWINIAN THEORY. 460 pages. 125 illnstrauonl Cloth, uoo
2. PosT-DARWINIAN QUESTIONS, Heredity and Uuht{ 338. $1.
3. ;:sréDn;vmuu UESTIONS. Isolation and Physi ogical Selaction
. 181. $1.00.

AN EXAMINATION OF WEISMANNISM.
236 pages. Cloth, $1.00 net.

THOUGHTS ON RELIGION.
Third Edition, Pages, 184. Cloth, gilt top, $1.25 net.

SHUTE, DR. D. KERFOOT.
FIRST BOOK IN ORGANIC EVOLUTION.
9 colored plates, 39 cuts. Pp. xvi+4 285. Price, $2.00 net (78. 6d. net)

EDMUNDS, ALBERT
HYMNS OF THE FAIT (DHAMMAPADA)
Being an Ancient Anthology Preserved in the Short Collection of the
Sacred Scriptures of the Buddhists. (In the Press.)

HILBERT, DAVID.
THE FOUNDATIONS OF GEOMETRY.,
With many new additions stil] nnpublished in German. Translated
by E. J. Townsend. Pp. 140. Price, $1.00net (4s. 6d, net).

LAGRANGE, JOSEPH LOUIS.
LECTURES ON ELEMENTARY MATHEMATICS.
With portrait of the author. Pp. 172. Price, $1 0o net (4s. 6d. net).

DE MORGAN, AUGUSTUS.
ON THE STUDY AND DIFFICULTIES OF MATHEMATICS.
Pp. viii+288. Cloth, $1.25 net (4s. 6d. net).

ELEMENTARY ILLUSTRATIONS OF THE DIFFERENTIAL AND
INTEGRAL CALCULUS.
New reprint edition. Price, $1.00 net (4s. 6d. net).



BUDGE, E. A W.
BOOK OF THE DEAD.
420 vignettes. 3 vols. Cloth, $3.75 net.

HUTCHINSON, WOODS.
THE GOSPEL ACCORDING TO DARWIN.
Pp. xii +241. Price, $1.50 (68.). -
FREYTAG, GUSTAV.
THE LOST MANUSCRIPT. A Novel.
a vols. 953 pages. Extra cloth, $4.00 (218). One vol,, cl., $1.00 {38.;.
MARTIN LUTHER.
Illustrated. Pp. 130, Cloth, $1.00 net (5s.).
ACVAGHOSHA.
DISCOURSE ON THE AWAKENING OF FAITH in the Mah4ayana,
From the Chinese. Pp., 176. Cl., $1.25 net (5s. net).
TRUMBULL, M. M.
THE FREE TRADE STRUGGLE IN ENGLAND.
Second Edition, 296 pages. Cloth, 75¢ (3s. 6d.).

WHEELBARROW : ARTICLES AND DISCUSSIONS ON THE LABOR QUESTION
With portrait of the author, 303 pages. Cloth, $1.00 (5s.).
GUNKEL, H. ’
THE LEGENDS OF GENESIS.
From the German. Pp. 164. Cloth, $1.00 net (4s. 6d. net),
OLDENBERG, H.
ANCIENT INDIA: ITS LANGUAGE AND RELIGIONS.
Pp. 110, Cloth, soc net (2s. 6d.).
CONWAY, MONCURE D.
SOLOMON, AND SOLOMONIC LITERATURE.
Pp. 243. Cloth, $1.50 net (6s.).
DEDEKIND, R.
ESSAYS ON THE THEORY OF NUMBER.
Trans. by W. W. Beman. Pp. 115. Cl., 75 cents net (3s. net),
GARBE, RICHARD. .
THE REDEMPTION OF THE BRAHMAN. A TaLE oF Hinbu LiFe,
Laid paper. Gilttop. 96 pages. Price, 75¢ (3s. 6d.).

THE PHILOSOPHY OF ANCIENT INDIA.
~ Pp. 8. Cloth, s0c net (2s. 6d.).
HUEPPE, FERDINAND.
THE PRINCIPLES OF BACTERIOLOGY.
28 Woodcuts. Pp. x +467. Price, $1.75 net (9s.).
LEVY-BRUHL, PROF. L.
HISTORY OF MODERN PHILOSOPHY IN FRANCE.
23 Portraits. Pp. 500. Cloth, $3.00 net (12s. net).
TOPINARD, DR. PAUL.
SCIENCE AND FAITH.
Pp. 374. Cloth, $1.50 net (6s. 6d. net).
BINET, ALFRED.

THE PSYCHOLOGY OF REASONING.
Pp. 193. Cloth, 75¢ net (3s. 6d.).

THE PSYCHIC LIFE OF MICRO-ORGANISMS.
Pp. 135. Cloth, 75¢ (3s. 6d.).

N. B. Send for our large ILLUSTRATED CATALOGUE, contain-
ing full details of our publications and of our two magazines, 7%e
Open Court and The Monist.



FINK, KARL.
A BRIEF HISTORY OF MATHEMATICS.
From the German. Pp., 333. Cloth, $1.50 net (ss. 6d. net).

SCHUBERT, HERMANN.
MATHEMATICAL ESSAYS AND RECREATIONS.
Pp. 149. Cuts, 37. Cloth, 25¢ net (3s. net),

HUC AND GABET, MM.
TRAVELS IN TARTARY, THIBET AND CHINA.
100 cuts, Pp, 688, 2 vols. $2.00 (108.). One vol., $1.25 net (ss. net).

CARUS, PAUL.
THE HISTORY OF THE DEVIL, AND THE IDEA OF EVIL.
31x Illustrations., Pages, 500. Price, $6.00 (30s.).
THE CROWN OF THORNS.
A Story of the Time of Christ. Illustrated. Pages, 73. Cloth, 75¢
net (3s. 6d. net).
EROS AND PSYCHE.
Illustrations by Paul Thumann, Pp. 125. Cl., $1.50 net (6s. net).
WHENCE AND WHITHER?
196 pages. Cloth, 75c net (3s. 6d. net).
THE ETHICAL PROBLEM.
Second edition, revised and enlarged. 351 pages. Cloth, $1.25 (6s. 6d.)
FUNDAMENTAL PROBLEMS.
Second edition, revised and enlarged. 372 pp. Cl., $1.50 (7s. 6d.).
HOMILIES OF SCIENCE.,
317 pages. Cloth, Gilt Top, $1.50 (7s. 6d.).
THE IDEA OF GOD.
Fourth edition. 32 pages. Paper 15c (9d.).
THE SOUL OF MAN.
2nd ed. 182 cuts. 482 pages. Cloth, $1.50 net (6s. net).
THE CHIEF'S DAUGHTER.
Illustrated Pp. 54. Cloth, $1.00 net (4s. 6d. net).
THE RELIGION OF SCIENCE.
Second, extra edition. Pp. 103, Cloth, 50c net (2s. 6d.).
PRIMER OF PHILOSOPHY
240 pages. Third Edition. Cloth, $1.00 (ss.).
THE GOSPEL OF BUDDHA. According to Old Records.
Seventh Edition. Pp. 275. Cloth, $1.00(5s.). In German, $1.25 (6s. 6d.)
BUDDHISM AND ITS CHRISTIAN CRITICS.
Pages, 311. Cloth, $1.25 (6s. 6d.).
KARMA. A Story oF EARLY BUDDHISM,
Illustrated by Japanese artists. Crépe paper, 75¢ (3s. 6d.).
NIRVANA: A STorY OF BUDDHIST PSYCHOLOGY.
(New edition in preparation.)
LAO-TZE'S TAO TEH KING.
Chinese-English. Pp. 360. Cloth, $3.00 (15s.).

CORNILL, CARL HEINRICH.
THE PROPHETS OF ISRAEL.
Pp., 200. Cloth, $1.00 net (5s.).
HISTORY OF THE PEOPLE OF ISRAEL.
) Pp. vi+325. Cloth, $1.50 (7s. 6d.).

POWELL, J. W.
TRUTH AND ERROR; or, the Science of Intellection,
Pp. 423. Cloth, $1.75 (7s. 6d.).

RIBOT, TH.
THE PSYCHOLOGY OF ATTENTION.
THE DISEASES OF PERSONALITY.
THE DISEASES OF THE WILL.
Cloth, 75 cents each (3s. 6d.). Full set, cloth, $1.75 (98.).
EVOLUTION OF GENERAL IDEAS.
Pp. 231. Cloth, $1.25 (58.).



The Religion of Science Library.

Bi-monthly reprints of standard works, philosophical :lassics, etc. Yearly
$1.50. Separate copies according to prices quoted.

No. 1. The Religion of Science. By PaurL Carus. 2sc (18.6d.).
2. Three Introductory Lectures om the Sciemce Thought. By F. Max
MOLLER. 25¢ (18. 6d.).
3. Three Lectures on the Science of Language, F. Max MOLLER. 25c (18.6d.).
4. The Diseases of Personality. By TH. RiBoT. 25¢C (18, 6d.
5. The Psychology of Attention. By TH. RiBoT. 25¢ (18. 6d.).
6. The Psyckic Life of Micro-Oyganisms. By ALFRED BINET. 25¢C (18.6d.)
. The Nature of the State. By PauL Carus. 15¢ (od.).
. On Doxble Comsciousness. By ALFRED BINET. 15¢C (94.).
9. FPundamental Pyoblems. By PauL CArus. soc (2s.6d.).
10, The Diseases of the Will. By Tn. RiBoT. 25c¢ (18. 6d.).
11. The Origin of Langmage. By Lupwia NOIRE. 15c (9d.).
12. The Free Trade Struggie in England, M. M. TRuMBULL, 25c (18. 62.)
13. Wheelbarrow om the uestion. By M. M. TRUMBULL. 35c (28.).
14. The Gospel of Buddha. By Paur Carus. 35c (25.).
15. The Primer of Philosophy. By PauL CArus, 2s5c (1s.6d.).
16, On Me: , and The Specific Energies of the Nervous System., By Pror.
EwaLp HERING. 12:: (od.).
. 17. The Redemption of the Br Tale of Hindu Life. By RICHARD
GARBE. 25¢C (18,62.).
18, Am Examination of Weismannism. By G.]. ROMANES. 35C (28.).
19. On Germinal Selection. By AucusT WEISMANN. 25C (18.6d.).
20, Lovers Three Thousand Years . By T. A. Goonwm.sd(Out of print.)
21, Popular Scientific Lectures. By ErNsT MACH. Soc (2. ).
22. Ancient India : Its Language and Religions. By H. OLDENBERG. 25C

18, 6d.).
23. 7&: Prophets of Isvael. By Pror. C. H. CorniLL, 25c (1. 6d.).
24. Homilies of Sciemce, By PAuL CAruS. 35C (28.).
25. Tbou;ktsn Religion. By G. J. ROMANES. soc (2s. 6d.).
. The Philosophy of Ancient India. By Pror. RICHARD GARBE. 25c (18.6d.)
27. Martin Lutker. By GusTAv FREYTAG. 25¢ (18.6d.).
28. English Secularism,. By GEORGE JacoB HoLYOAxE. 2s5c (1s. 6d.).
29. On Orthogenesis. B£ H. EIMER. 25cC (18. 6d.).
30. Chinese Philosopky. By PauL Carus. 25c (1s. 6d.).
35, The Lost Manuscript, By GusTav FREYTAG. 6oc (38.).
32, 4 rfl!n:}mnx'r:v-sz;:glogl’t:al Theory of Organic Evolution. By CARL VON
AEGELIL. I5C ..
33. Chimese Fictic 3 By Dr. G T. CanpLIN, 15¢ (9d.).
34. Mathematical Essays and Recreatioms. By H. SCRUBERT. 25cC (1s. 6d.)
8S. The Etkical Problem. By PAuL CARrus, soc (28. 6d.).
36. Buddhism and Its Christiam Critics, By PAuL CArus. Soc (28.6d.).
37. Psychology for Bei{mun. By Hirax M. STANLEY. 20cC (18.).
38. Discourse om Method. By DESCARTES. 25cC (1s.6d.).
39. The Dawn of a New Era. By PavL CArus. 15c (9d.).
40. Kant and Spencer. By PAuL CARUS. 20cC (18.),
41, The Soul of Man., By PaurL Carus, ésc (3s. 6d.).
42, Worlds Congress Addresses. By C. C. BoNney. 15¢ (9d.).
43. The Gospel According to Darwin, By Woopns HUTCHINSON. s5oc (28. 6d.)
44. Whence and Whither. By PauL CARus. 25c (18.6d.).
45. E(uqmzsr)avmufng Human Understanding. By Davip Huue. asc
1s. 6d.).
46. Enguis )Cm:’ng the Principles of Morals, By Davip Huue, 25¢
18, 6d.).
47. 7‘1:: Psychology of Rea:nx};. By ALrrED BINET. 25¢ (18. 6d.).
48. The Principles of Human Knowledge. By GRORGE BERKELEY. 25¢C (18.6d.).
49. Three D::dla);w: Between Hylas and Philonous. By GEORGE BERKELEY.
asc (18. 6d.).
50, hsdh!c' Worship: A Study in the Psychology of Religion. By Jomn P.
HyLan., 25 jxs. 6d.).
s1. Dy tes’ Meditations, with Selections from the Principles, 35¢c (8.
82, Leibniz's szletafky:ic.r, Corvespondence with Arnauld, and Momadology,
(28 6d.). N
§3. Kant's sgomena, 5oc (28, 6d.).

o






















.. e



CABOT SCIENCE LIBRARY

CABOT
MAY 0 9 2007




NCE LIBRARY
I

MAY, 217 260R002




The foundations of

] IIIIIIIIITI

32

QMBS M8
Cabot

I e —







